

Chronic Kidney Disease: The AusDiab Study 2005

Dr Kevan Polkinghorne, Associate Professor Steven Chadban, Professor Robert Atkins

1/7 adult Australians have early CKD AusDiab Survey April 2001

- 11,247 adults (>25yrs) chosen by census district
- Australian nation-representative sample
- 16% had evidence of kidney damage
 - Proteinuria: 2.4%
 (300,000 people)
 - GFR < 60ml/min/1.7m²: 11.2% (1.4m people)

Chadban et al, JASN 14:S131, 2003

- Haomaturia

Adjusted HR for all-cause mortality according to baseline risk factors

Adjusted for age, sex, total cholesterol, taking lipidlowering medication, triglycerides and WHR

- The number of new cases (incidence) of end-stage kidney disease in Australia is currently 95/million population per annum, with diabetes being the leading cause
- 30% of all new end-stage kidney disease is due to diabetes compared with 17% in 1994
- The AusDiab study has enabled, for the first time, the opportunity to determine the rate at which new cases of chronic kidney disease emerge among Australian adults who were free from chronic kidney disease at the time of the initial survey

Objectives

- The objectives are:
- (i) to estimate the incidence (% per year) of both chronic kidney disease and early kidney damage, and
- (ii) to present the risk factors associated with these conditions.

Definitions: Impaired glomerular filtration rate

- New (incident) cases of impaired GFR were defined as:
 - individuals who had a normal eGFR (>60 mL/min/1.73m²) at baseline, but had an eGFR of <60 mL/min/1.73m² at follow-up.

Definitions: Albuminuria

- New (incident) cases of albuminuria were defined as:
 - people who had normal albumin levels in the urine at baseline, but had a spot urine albumin:creatinine ratio (≥2.5 mg/mmol for males and ≥3.5 mg/mmol for females) at follow-up.

Results: Impaired glomerular filtration rate

Incidence of impaired glomerular filtration rate according to sex

Incidence of impaired glomerular filtration rate according to baseline age

Incidence of impaired glomerular filtration rate according to baseline glucose tolerance status

Incidence of impaired glomerular filtration rate according to baseline hypertension status

Impaired glomerular filtration rate: Age & sex adjusted risks

Impaired glomerular filtration rate	Univariate		Adjusted for Age & Sex	
	OR	95% C.I.	OR	95% C.I.
Glucose tolerance status:				
IFG vs normal GT	1.16	0.65 – 2.06	1.31	0.71 – 2.42
IGT vs normal GT	2.72	1.98 – 3.72**	1.60	1.14 – 2.24*
DM vs normal GT	2.60	1.75 – 3.87**	1.39	0.91 – 2.25
Hypertension vs normal	3.63	2.81 – 4.70**	1.73	1.29 – 2.31**

* p<0.05 ** P<0.001

Results: Albuminuria

Ilestige Stud

Incidence of albuminuria according to baseline age

Incidence of albuminuria according to baseline glucose tolerance status

Incidence of albuminuria according to baseline hypertension status

Albuminuria: Age & sex adjusted risks

Albuminuria	Univariate		Adjusted for Age & Sex	
	OR	95% C.I.	OR	95% C.I.
Glucose tolerance status:				
IFG vs normal GT	2.25	1.40 - 3.63**	1.69	1.04 – 2.75*
IGT vs normal GT	1.70	1.14 – 2.52*	1.13	0.75 – 1.70
DM vs normal GT	5.49	3.89 - 7.75**	3.18	2.22 - 4.56**
Hypertension vs normal	3.67	2.81 – 4.81**	1.86	1.37 – 2.51**

* p<0.05 ** P<0.001

Key findings (1)

- Every year, almost 1.0% of adults developed chronic kidney disease manifested by a reduction in kidney function (impaired glomerular filtration rate). The risks were higher females and in older people.
- Every year almost 1.0% of adults developed evidence of kidney damage as manifested by the leakage of albumin into the urine (albuminuria). The risks were higher in males and in older people.

Key findings (2)

- Having high blood pressure increased the incidence of impaired glomerular filtration rate and albuminuria three-fold.
- Having diabetes increased the incidence of albuminuria five-fold and of developing a reduction in kidney function two-fold.