

IS A LOWER BP BETTER IN DKD?

George L. Bakris, MD, F.A.S.N.
Professor of Medicine
University of Chicago Medicine

Disclosure of Interests

Investigator Initiated Grant/Research Support- TAKEDA (direct funding to University of Chicago)

National Clinical Trial Principal Investigator Studies - Medtronic, Relypsa (direct funding to University of Chicago)

Consultant/Advisor -Takeda, AbbVie, CVRx, Janssen, Eli Lilly/Boeringher-Ingelheim, Medtronic, BMS, Novartis, GSK, Bayer

Editor, Am J Nephrology; HTN Section Editor-UpToDate

Special Government Employee-FDA and CMS

Board Member – National Kidney Foundation

Perspective

- The bulk of outcome data about BP levels in diabetes is based on trials in patients with high CV risk (generally >7-10 years).
- Only two prospective trials were powered to address the question of BP level and effect on CV outcome in diabetes(UKPDS and ACCORD)
- There are NO powered CKD outcome studies in people with diabetic nephropathy.
- Only one trial tried to assess early intervention on outcomes and that was very underpowered for CV or renal outcomes because of funding constraints (ABCD)

RCTs Designed to Test Glycemic Control on CVD in T2DM

- UKPDS (1998)
 United Kingdom Prospective Diabetes Study
- ACCORD (2008)
 Action to Control Cardiovascular Risk in Diabetes
- ADVANCE (2008)
 Action in Diabetes and Vascular disease: Preterax and Diamicron Modified Release Controlled Evaluation
- VADT (2009)
 Veterans Affairs Diabetes Trial

Achieved BPs in Diabetes Outcome Clinical Trials

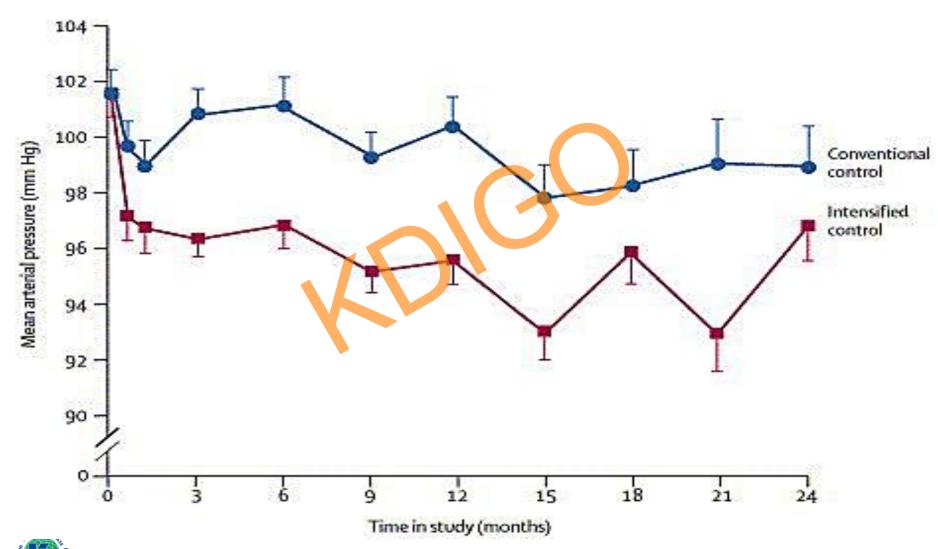
Clinical Outcome Trial	Achieved Level of Systolic BP (mmHg)	
ACCORD (primary)	119 (intensive); 133(conventional)	
UKPDS (primary)	144 (intensive); 154 (conventional)	
ACCOMPLISH (secondary)	Overall mean 133	
INVEST (Secondary)	144 (tight control);149 (conventional)	
ONTARGET (secondary)	Averaging around 140	
VADT (secondary)	127 (intensive);125 (conventional)	
ADVANCE (secondary)	137 (in both intensive and conventional glucose control)	

Summary of Guideline Goal BP and Initial Therapy in Kidney Disease to Reduce CKD Progression?

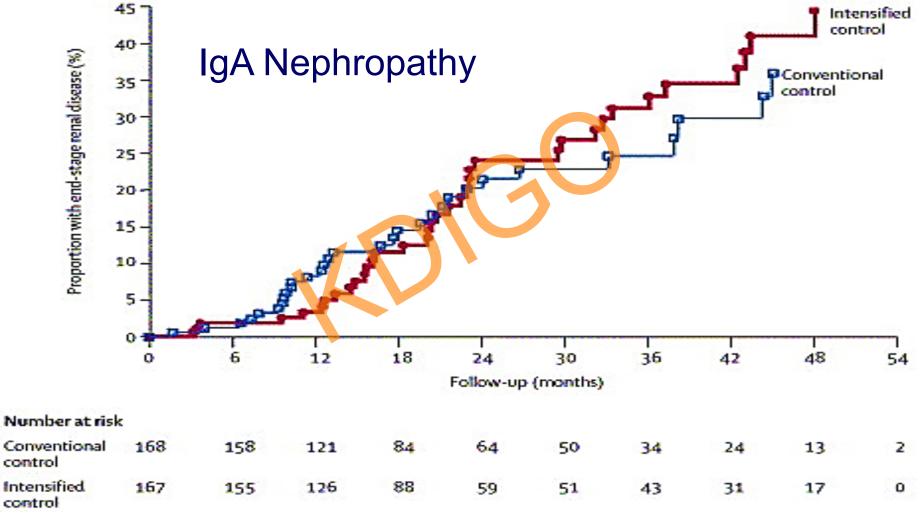
Group	Goal BP (mmHg)	Initial Therapy
2014 Expert Panel (2014) ADA (2015)	<140/90 <140/90	ACE Inhibitor/ARB ACE Inhibitor/ARB*
KDIGO/KDOQI (NKF) (2012)	<140/90	ACE Inhibitor/ARB
ESH (2007+ 2009)	<130/80	ACE Inhibitor/ARB*
KDOQI (NKF) (2004)	<130/80	ACE Inhibitor/ARB*
JNC 7 (2003)	<130/80	ACE Inhibitor/ARB*
Am. Diabetes Assoc (2003)	<130/80	ACE Inhibitor/ARB*
Canadian HTN Soc. (2002)	<130/80	ACE Inhibitor/ARB*
Natl. Kidney Foundation (2000)	<130/80	ACE Inhibitor*
British HTN Soc. (1999)	<140/80	ACE Inhibitor
WHO/ISH (1999)	<130/85	ACE Inhibitor
JNC VI (1997)	<130/85	ACE Inhibitor

JNC 7 Goals for CKD

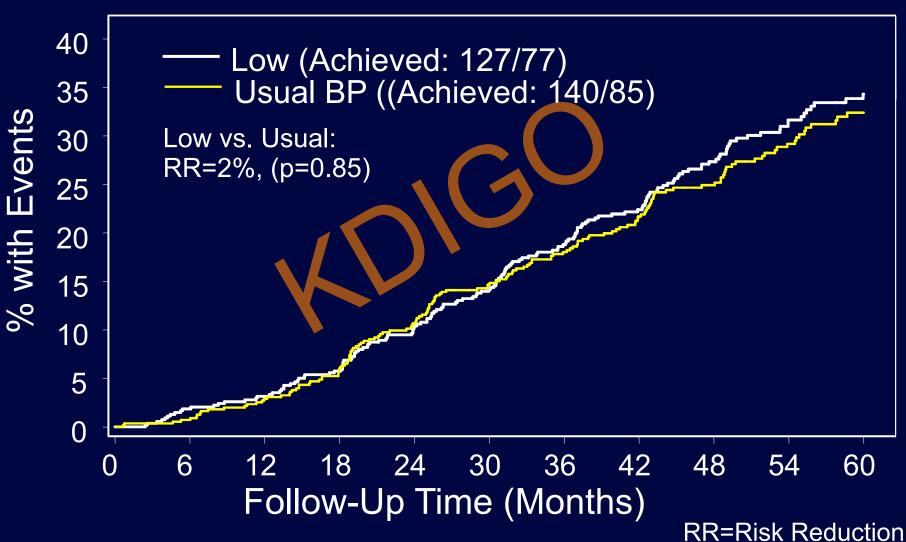
<130/80 mmHg Was this defensible?


3 Randomized Trials of BP control on CKD progression In Non-Diabetic CKD

- MDRD (Modification of Dietary Protein in Renal Disease)
- REIN-2 (Ramipril Efficacy in Nephropathy)
- AASK (African American Study of Kidney Disease)


Mean arterial pressure in each study arm of REIN-2

Ruggenenti P, et.al. Lancet 365 (9463):939-946, 2005.


Proportion of patients with end-stage renal disease in each study arm REIN-2

Ruggenenti P, et.al. Lancet 365 (9463):939-946, 2005.

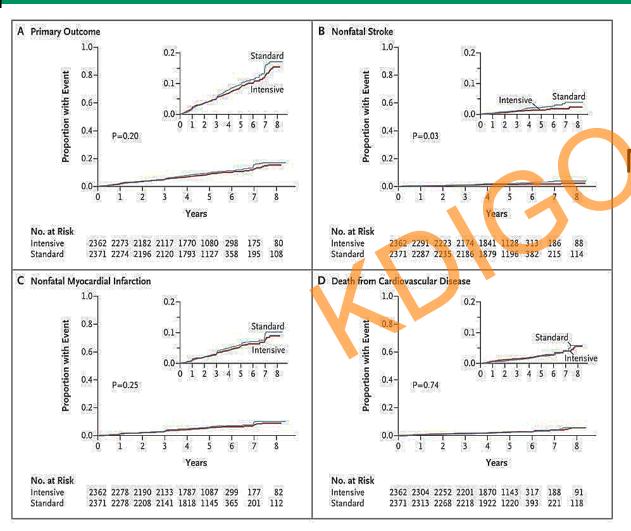
Composite Clinical Events: Declining GFR Event, ESRD or Death by BP Goal

There are No randomized trials of BP goal among those with diabetic kidney disease

Data from the ADVANCE trial

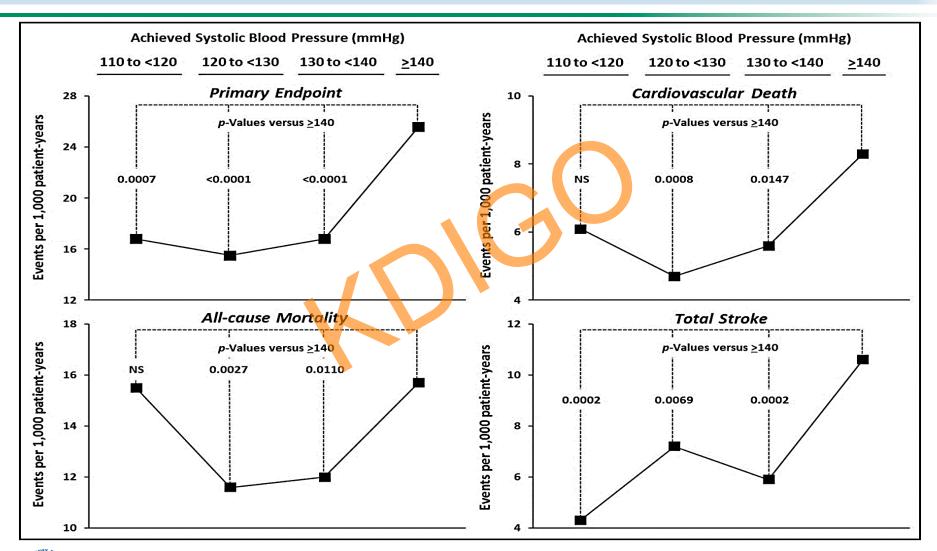
Zoungas S, et.al. *Diabetes Care 2009;32 (11):2068-2074*

Blood pressure-lowering arm Glucose-lowering arm Relative risk Relative risk Favors Favors Favors Favors reduction reduction Placebo Standard Per-Ind Intensive (95% CI) (95% CI) All renal events Overall 9% (2 to 16) 21% (14 to 26) Overall Placebo 12% (3 to 21) Standard 24% (15 to 31) Intensive 17% (8 to 26) Per-Ind 5% (-6 to 15) New or worsening nephropathy Overall 18% (-1 to 32) Overall 19% (2 to 34) 18% (-7 to 37) Placebo Standard 20% (-4 to 39) Intensive 17% (-12 to 38) Per-Ind 18% (-9 to 39) New-onset microalbuminuria Overall 6% (-1 to 14) Overall 20% (13 to 26) 10% (0 to 20) Placebo Standard 23% (14 to 32) Per-Ind 2% (-11 to 15) Intensive 16% (6 to 25) New-onset macroalbuminuria Overall Overall 31% (13 to 45) 31% (12 to 45) 24% (-4 to 44) Placebo Standard 23% (-4 to 43) Intensive 41% (14 to 59) Per-Ind 40% (13 to 59) 0.5 1.0 1.2 0.5 1.2 1.0 Hazard ratio (95% CI) Hazard ratio (95% CI)

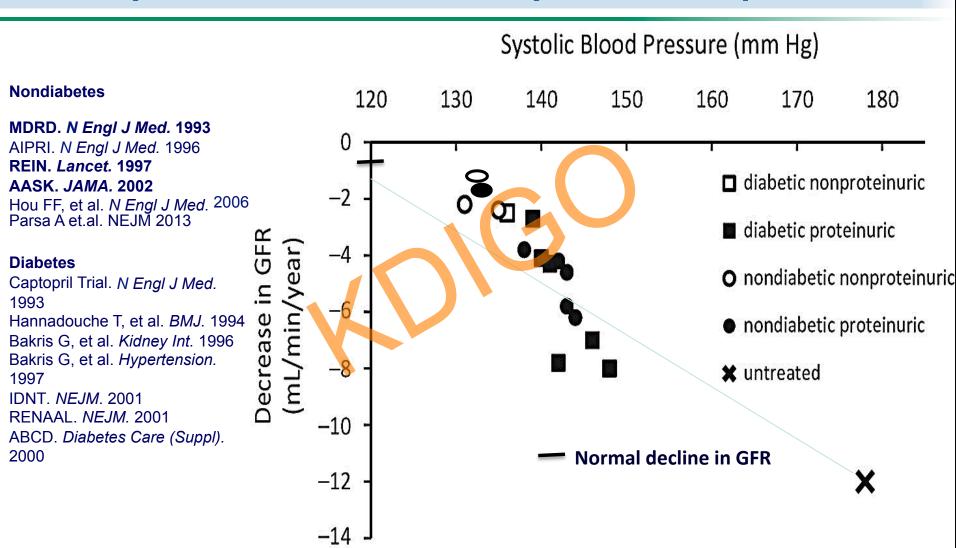


Data from the ADVANCE trial (6 Year Post hoc follow-up)

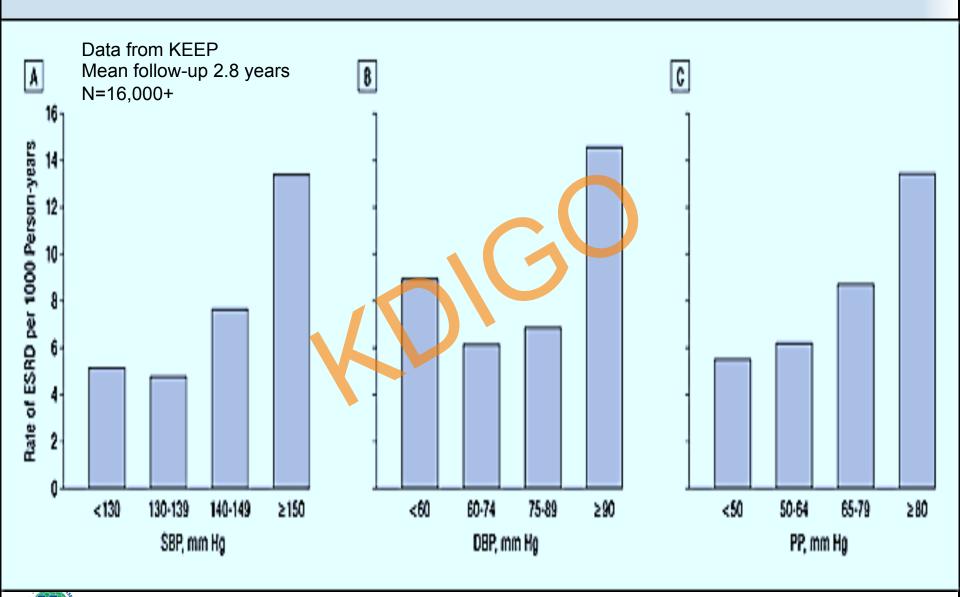
- The mean between-group difference in BP during the randomized ADVANCE trial (5.6/2.2 mm Hg, P<0.001)
- No longer evident 6 months after the end of that part of the trial.
- BPs recorded at the time of the final randomized visit for the patients in the glucose-control comparison (6 months after the last visit for the BP control comparison)
- 137/74 mm Hg in the perindopril—indapamide group and 136/74 mm Hg in the placebo

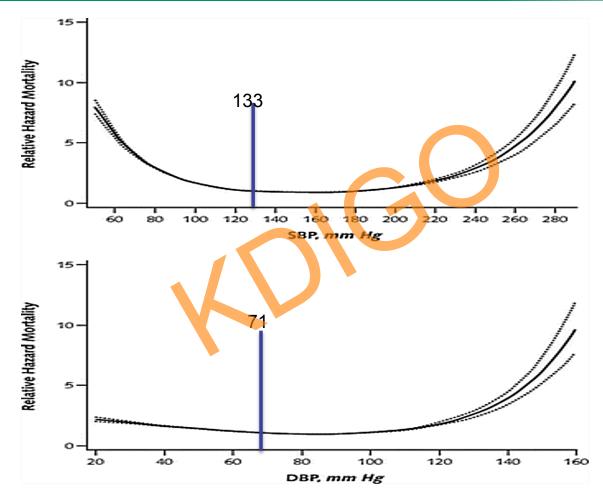

Only BP Randomized Trial in Type 2 Diabetes

ACCORDNo renal endpoints
No CV benefit overall



Event rates (per 1000 patient years) for CV outcomes in ACCOMPLISH categorized according to their achieved systolic blood pressures.


Relationship Between Achieved BP and Decline in Kidney Function from Primary Renal Endpoint Trials


Update from Kalaitzidis R and Bakris GL In: Handbook of Chronic Kidney Disease Daugirdas J (Ed.) 2011

Rates of end-stage renal disease per 1000 person-years

Blood Pressure and Mortality in U.S. Veterans With Chronic Kidney Disease: A Cohort Study

Kovesdy C et.al. Ann Intern Med. 2013;159(4):233-242.

Multivariable-adjusted relative hazards (hazard ratios [95% Cls]) of all-cause mortality associated with SBP and DBP relative to a hypothetical patient with the mean time-varying SBP (133 mm Hg) and DBP (71 mm Hg).

IS A LOWER BP BETTER IN DKD ?

Yes-to a point below 140 mmHg and above 60 mmHg

