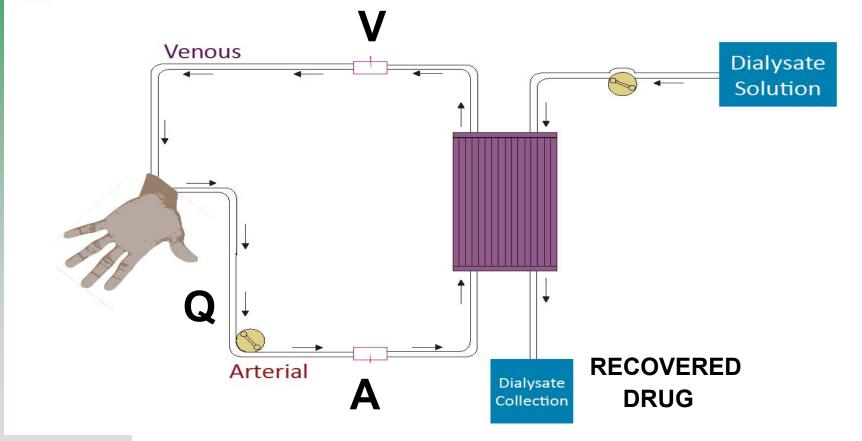
Drug Prescribing in Kidney Disease: Initiative for Improved Dosing

Drug Removal by Intermittent Renal Replacement Therapies

Section Leaders: Arthur Atkinson and Jason Umans

Kidney Disease: Improving Global Outcomes

ELIMINATION BY DIFFERENT ROUTES


MEASUREMENTS	RENAL	HEPATIC	DIALYSIS
BLOOD FLOW	+*	+*	+
AFFERENT CONC.	+	+	+
EFFERENT CONC.	0	0	+
ELIMINATED DRUG	+	0	+

*not actually measured in routine PK studies

Kidney Disease: Improving Global Outcomes

DATA SOURCES FOR FICK EQUATION

IMPACT OF CL_D

$CL_{E} = CL_{R} + CL_{NR} + CL_{D}$

Kidney Disease: Improving Global Outcomes

CRITERION FOR DIALYSIS EFFICACY*

$CL_{EC} > 30\% [CL_{R} + CL_{NR}]$

BUT CLEARANCE ESTIMATES MUST BE COMPARABLE

* Levy G. Am J Med 1977;62:461-5.

Kidney Disease: Improving Global Outcomes

RECOVERY METHOD

$$\mathbf{CL}_{\mathbf{D}} = \frac{\mathbf{C}_{\mathbf{D}} \cdot \mathbf{Vol}_{\mathbf{D}}}{\overline{\mathbf{A}} \cdot \mathbf{t}}$$

$$CL_{D} = \frac{C_{D} \cdot Vol_{D}}{AUC_{A}}$$

Kidney Disease: Improving Global Outcomes

A-V DIFFERENCE METHOD

$CL = Q \begin{bmatrix} A - V \\ A \end{bmatrix}$

Q = DIALYZER BLOOD FLOW A = CONCENTRATION IN BLOOD COMING TO DIALYZER V = CONCENTRATION IN BLOOD LEAVING DIALYZER

Kidney Disease: Improving Global Outcomes

TWO DIALYSIS MYTHS

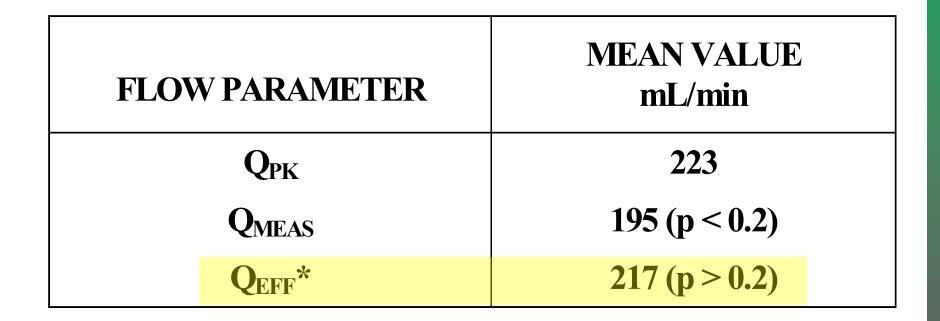
• NEED TO USE BLOOD CONCENTRATIONS WHEN CALCULATING BLOOD CLEARANCE

> BUT PLASMA CONCENTRATIONS PROPORTIONAL TO BLOOD CONCENTRATIONS, SO MAKES NO DIFFERENCE IN A/[A + V] RATIO

• NEED TO USE PLASMA FLOW WHEN CALCULATING PLASMA CLEARANCE

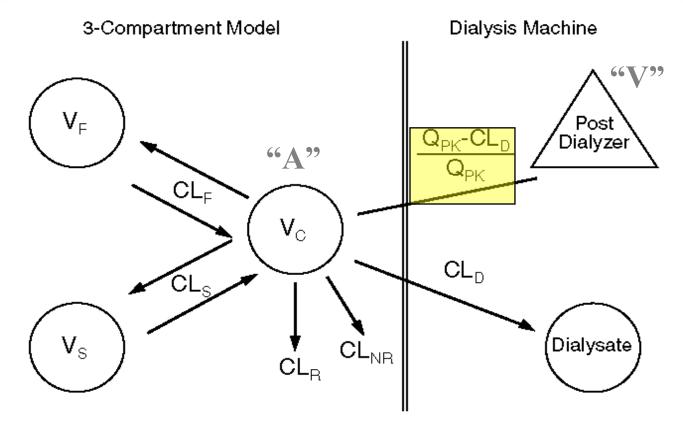
PLASMA VS. BLOOD CLEARANCE

RECOVERY :
$$CL_P = \frac{U \bullet V}{P}$$
 $CL_B = \frac{U \bullet V}{B}$


A-V DIFFERENCE:
$$CL_{P} = Q_{PK} \left(\frac{A-V}{A}\right)$$
 $CL_{B} = Q_{B} \left(\frac{A-V}{A}\right)$

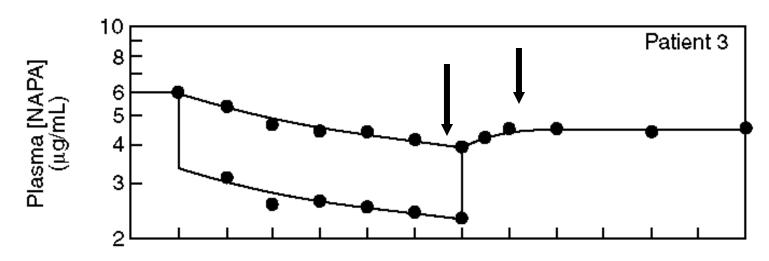
IF $B > P : CL_P > CL_B$, SO: $Q_{PK} > Q_B > Q_P$

Kidney Disease: Improving Global Outcomes

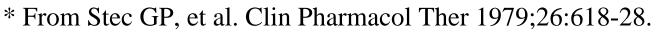

NAPA IN RBC IS DIALYZED

* $Q_{EFF} = [(1 - Hct) + (RBC/P)(HCT)] Q_{MEAS}$

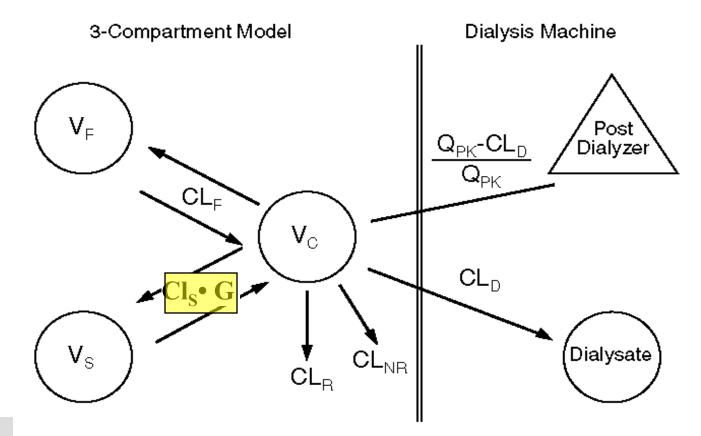
KINETIC MODEL USED TO ANALYZE HEMODIALYSIS DATA*



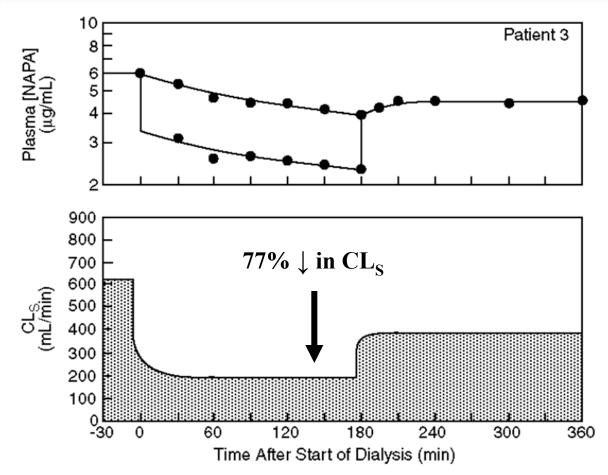
* From Stec GP, et al. Clin Pharmacol Ther 1979;26:618-28. *Kidney Disease: Improving Global Outcomes*


FICK CLEARANCE EQUATION $= \mathbf{Q} \left| \frac{\mathbf{A} - \mathbf{V}}{\mathbf{A}} \right|$ CL CLA QA QA **CLA** _ CL $\mathbf{V} = |$

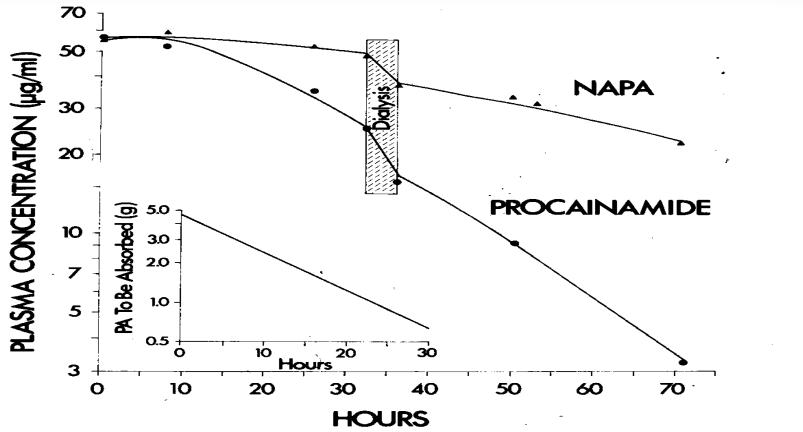
TWO PROBLEMS WITH FIXED-PARAMETER MODEL*



- 1. <u>DURING DIALYSIS</u>: [A] AND [V] DROP MORE THAN EXPECTED FROM DRUG RECOVERY
- 2. <u>AFTER DIALYSIS</u>: CONCENTRATION REBOUND IS LESS THAN EXPECTED



PARAMETER CHANGE REQUIRED TO MODEL DIALYSIS PK


REDUCTION IN CL_S DURING AND AFTER HEMODIALYSIS

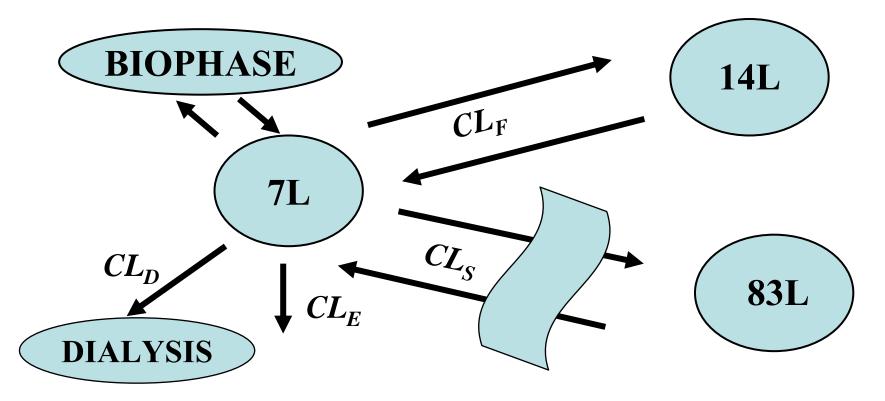
Kidney Disease: Improving Global Outcomes

IMPLICATIONS OF \downarrow **CLS FOR DIALYSIS** TREATMENT OF DRUG TOXICITY*

* From: Atkinson AJ Jr, et al. Clin Pharmacol Ther 1976;20:585-92. *Kidney Disease: Improving Global Outcomes*

WAS DIALYSIS EFFICACIOUS?

- DIALYSIS INCREASED DRUG CLEARANCE
 PA TWO FOLD
 NAPA 3.8 FOLD
- BUT 4 hr OF DIALYSIS REMOVED < 1 gm of 7 gm DOSE 340 mg PA 470 mg NAPA
- HOWEVER, BLOOD LEVELS FELL SUBSTANTIALLY PA: 25.7 μg/mL 15.5 μg/mL
 NAPA: 47.0 μg/mL 35.5 μg/mL
 AND PATIENT'S CONDITION STABILIZED


PA & NAPA KINETICS IN TOXIC PATIENT

	NORMAL		PATIENT	
	PA	NAPA	PA	NAPA
t _{1/2} (hr)	2.5	6.2	10.5	35.9
CL _E (mL/min)	590	233	66.8	16.1
CL _D (mL/min)			68.3	45.8
V _{dβ} (L/kg)	1.80	1.76	0.76	0.63

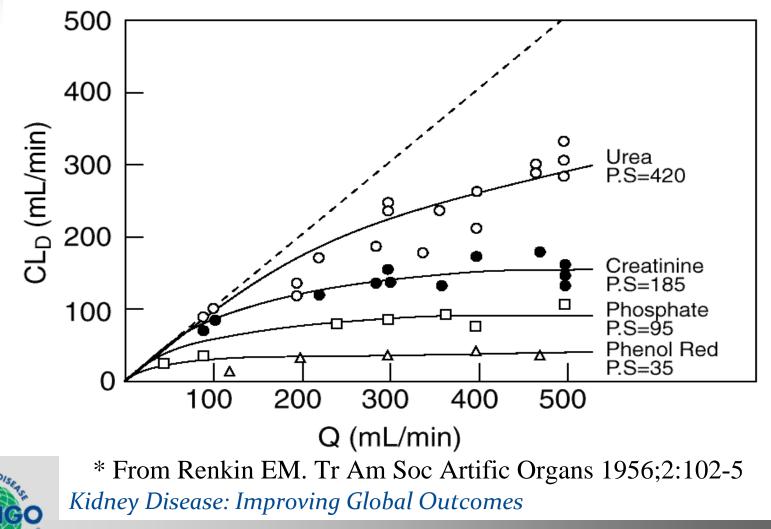
DIALYSIS V_D ESTIMATE: V_D = $\frac{\text{DRUG REMOVED}}{\Delta \text{ CONCENTRATION}}$

SEQUESTRATION OF DRUG IN SOMATIC TISSUES

Kidney Disease: Improving Global Outcomes

NEED FOR INTRADIALYZER TRANSFER OFRESULTS*

$CL_{D} = Q(1 - e^{-P \cdot S/Q})$


- Q = DIALYZER BLOOD FLOW
- P · S = PERMEABILITY-SURFACE AREA PRODUCT OF DIALYZING MEMBRANE

NEGLECTS: BOUNDARY EFFECTS, ULTRAFILTRATION

* From Renkin EM. Tr Am Soc Artific Organs 1956;2:102-5

DIALYSIS CLEARANCE VS. DIALYZER BLOOD FLOW *

OBAL OUT

POSSIBLE USE FOR INTRA-DIALYZER TRANSFER OF RESULTS

- PERFORM PRELIMINARY *IN VITRO* STUDY TO OBTAIN P RATIO FOR DRUG & STANDARD COMPOUND FOR DIALYZER BEING USED IN DIALYSIS STUDY (RECORD Q & RBC/PLASMA).
- THIS RATIO CAN BE USED TO ESTIMATE DRUG CL_D FOR OTHER DIALYZERS AND OTHER Q VALUES IF P OF STANDARD COMPOUND FOR THAT DIALYZER IS KNOWN.
- NEED TO SELECT APPROPRIATE STANDARD COMPOUND (? CREATININE).

STABILITY OF P·S ACROSS 10 DIFFERENT DIALYZERS *

PROCAINAMIDE/NAPA:

RATIO OF DIALYZER P· S COEFFICIENTS*

 1.28 ± 0.23

RATIO OF FREE WATERDIFFUSION COEFFICIENTS1.23

* Estimates of P·S based on *in vitro* CL_D results from
 Gibson TP et al. Clin Pharmacol Ther 1976;20:720-6.

NEED FOR INTRADIALYZER TRANSFER OFRESULTS*

$\mathbf{CL}_{\mathrm{D}} = \mathbf{Q}(\mathbf{1} - \mathbf{e}^{-\mathbf{P} \cdot \mathbf{S}/\mathbf{Q}})$

Q = DIALYZER BLOOD FLOW

P · S = PERMEABILITY-SURFACE AREA PRODUCT OF DIALYZING MEMBRANE

* From Renkin EM. Tr Am Soc Artific Organs 1956;2:102-5

