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Mortality in patients with end-stage renal disease (ESRD)

remains unacceptably high. Emerging techniques and

advances in dialysis technology have the potential to

improve clinical outcomes in the ESRD population. This

report summarizes the deliberations and recommendations

of a conference sponsored by Kidney Disease: Improving

Global Outcomes to address the following questions: (1) what

is the appropriate frequency and duration of hemodialysis;

(2) how should we optimize water quality and dialysate

composition; and (3) what technical innovations in blood

purification and bioengineering can result in better clinical

outcomes? The conference report will augment our current

understanding of clinical practice in blood purification and

will pose several high-priority research questions.
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Kidney Disease: Improving Global Outcomes convened a
Controversies Conference in Paris from 14 to 15 October
2011, titled ‘Novel techniques and innovation in blood
purification: How can we improve clinical outcomes in
hemodialysis?’ The conference, attended by 50 international
experts, was designed to establish consensus and directions
for optimal modes of blood purification. The plenary session
presentations were followed by breakout group discussions
to address three specific topic areas: (1) dialysis technique—
frequency and duration; (2) dialysate composition and
toxins; and (3) technical advances in dialysis. The breakout
group deliberations were reported to the entire group,
and a consensus-building process led to the clinical
practice and research recommendations from the conference
attendees, which are the substance of this report. The report
was reviewed by all breakout group leaders, cochairs,
and representatives of the Kidney Disease: Improving
Global Outcomes Board of Directors. The conference
agenda, selected presentations, and abstracts of the meeting
are available on the Kidney Disease: Improving Global
Outcomes website (http://www.kdigo.org/meetings_events/
novel_tech.php).

The recent interest in novel techniques and innovation in
blood purification was born out of the impasse in an effort to
improve survival and quality of life of patients with end-stage
renal disease (ESRD). Although there have been medical and
technical advances, mortality rate of patients with ESRD
remains unacceptably high at about 10–20% per year. To date,
most medical interventions have failed to change the survival
of ESRD patients.1,2 It was suggested that the high mortality
rate in ESRD was related to poor clearance of uremic toxins
within the three-times-a-week paradigm. This hypothesis was
tested in the Hemodialysis Study, a randomized controlled
study that did not demonstrate a positive effect on patient
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survival when dialysis dose was increased from a
pretreatment Kt/V of 1.32 to 1.71.3 Of equal importance is
that the Hemodialysis Study did not demonstrate any overall
benefit related to the use of high-flux versus low-flux
dialyzers.3 Recently, another randomized trial in Europe,
the Membrane Permeability Outcome Study, was unable to
show improved survival in all patients treated with high-flux
membranes.4 Although the provision of more intensive
conventional hemodialysis has not reduced mortality, more
frequent hemodialysis has demonstrated improvements in
several clinical surrogate outcomes. Indeed, the Frequent
Hemodialysis Network (FHN) Daily Dialysis and the Alberta
Kidney Disease Network (AKDN) Trials have reported
regression of left ventricular (LV) hypertrophy, improved
blood pressure control, and better quality of life.5–7

Other observational studies have suggested better survival
(compared with conventional hemodialysis) with more
frequent hemodialysis.8,9 At the same time, use of
convective techniques, such as hemodiafiltration (HDF),
has increased and is now common in Europe and in other
parts of the world. Survival advantage,10 hemodynamic
stability,11 and enhanced clearance of small and middle
molecules12 have been reported with the use of HDF,
but reports of larger controlled trials in Turkey and the
Netherlands have not shown an overall survival
advantage.13,14

With the increase in the worldwide chronic dialysis
population and the growth of renal replacement therapy
programs in large countries such as China and India, it has
become evident that advances in technology and process are
required to facilitate the widespread clinical application of
renal replacement therapy. At present, most dialysis machines

are not engineered to be used easily by patients. Improved
flexibility of a dialysis platform for users with different levels
of training and skills will likely transform the clinical
landscape of ESRD care. Other novel technical advances in
blood purification include application of nanotechnol-
ogy,15,16 the use of sorbents to remove uremic toxins
and regenerate water for dialysis,17 ‘wearable kidneys,’18,19

and the incorporation of renal cells as part of a bioarti-
ficial kidney.15,20,21 The clinical applications of novel
biomaterials22 and therapeutic use of endothelial23 or
endothelial progenitor cells24 may provide much needed
innovation in vascular access devices (Figure 1).

HEMODIALYSIS TECHNIQUES: DURATION AND FREQUENCY
Nomenclature

More frequent dialysis than the standard three-times-a-week
has been performed since the 1960s;25–30 however, there is no
uniform nomenclature to describe the different types of
more frequent hemodialysis. Our group proposes that all
hemodialysis prescriptions should be described by indicating
both duration of the individual dialysis session and the
frequency per week (Table 1).

Other frequencies can also be derived from this nomen-
clature, such as conventional indicates three times per week,

Vascular access

• Preoperative mapping
• Ultrasound-assisted first cannulation
• Autologous vascular grafts
• Drug-eluting perivascular wraps

Dialyzer
• High-flux membranes

Dialysis machine

Dialysate
• Cool temperature
• Improved purity
• Individualization of
  of composition

• Relative blood-volume monitoring
• Active biofeedback devices
• Wearable device
• Implantable device

• Macrostructural changes in design
• Changes to membrane nanostructure
• Composite membrane
• On-line hemodiafiltration

Figure 1 | Innovations in hemodialysis technology.

Table 1 | Descriptive nomenclature for hemodialysis
frequency and duration

Conventional hemodialysis 3–5 h per session, three times per week
Short daily hemodialysis Less than 3 h per session, six times per week
Standard daily hemodialysis 3–5 h per session, six times per week
Long daily hemodialysis More than 5 h per session, six times per week
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and the words short, standard, and long denote the length of
an individual dialysis session. Other increased frequency
lengths include every other day and four or five times per
week hemodialysis. The location of the dialysis session
should be indicated as in-center, self-care (for patient-
assisted in-center hemodialysis), home-assisted (for staff-
assisted home hemodialysis), and home (for patient provided
home hemodialysis). The use of a standard nomenclature for
describing the dialysis prescription should assist in compara-
tive studies and in meta-analyses of different, more frequent
hemodialysis prescriptions.

Potential benefits of more frequent hemodialysis—
observational studies

As early as 1972, Bonomini et al.27 noted that changing
patients to short daily dialysis (3–4 h for 5 days per week) led
to a resolution of severe anemia, polyneuropathy, insomnia,
pruritus, restless leg syndrome, anorexia, amenorrhea, and
impotence. Similar improvements in these and other areas,
such as blood pressure control and LV hypertrophy, have
been noted by many other investigators since that time in
both Europe and North America.31–34 Despite the enthusiasm
for more frequent dialysis therapies, it was not until the 21st
century that randomized trials were performed to assess the
potential risks and benefits of more frequent hemodialysis
modalities.

As late as 2006, a review of daily in-center hemodialysis
was based on only 25 published manuscripts since 1989,
which included information on five or more patients,
followed up for at least 3 months, and were receiving a
dialysis prescription of 1.5–3 h for 5–7 days per week.35 A
total of 14 cohorts with 268 unique patients were described in
these publications, with only 1 randomized trial. There was
a benefit of daily in-center hemodialysis in improving
the control of hypertension, by either reducing the number
of antihypertensive medications required and/or improving
systolic and diastolic blood pressures. The findings for both
serum albumin levels and quality of life were mixed, with
5 of 10 studies demonstrating an improvement in these
parameters. Improvement in phosphate control, as deter-
mined by either lower serum phosphate levels or a decrease in
the utilization of phosphate binders, was seen in only two of
eight studies. Finally, there was no change in the rate of
vascular access dysfunction in five of the seven reported
studies.

Similarly, a review of nocturnal hemodialysis, published in
2005, identified only 10 manuscripts and 4 abstracts that
reported on at least 1 of 4 outcomes of interest, had follow-
up of at least 4 months, included a comparator group
(case–control or pre/post within patient comparison), and
provided a dialysis prescription of at least 5 nights per week
and 6 h per session.36 A total of 4 cohorts with 4–63 patients
per cohort were found, with follow-up ranging from 6 weeks
to 3.4 years; none of the studies were randomized trials. Daily
nocturnal hemodialysis improved the control of hyperten-
sion, by both reducing the number of antihypertensive

medications required and improving systolic and diastolic
blood pressures. This therapy was shown to improve anemia,
either by a reduction in erythropoietin dose or by an increase
in hemoglobin levels. Improvement in phosphate control, as
determined by either serum phosphate levels or a decrease in
the utilization of phosphate binders, was seen in one of two
studies. Analysis of more recent retrospective data has shown
a survival benefit for patients who undergo more frequent
home hemodialysis compared with in-center hemodialysis;
however, these analyses are confounded by selection bias and
lack of information on the socioeconomic and biochemical
data adjustment.9,37–39

Potential benefits of more frequent hemodialysis—
randomized trials

Several randomized studies have been performed with
more frequent hemodialysis prescriptions, including the
FHN studies in both short-daily5 and long-nocturnal
hemodialysis,7 as well as the AKDN Trial of long-nocturnal
hemodialysis.6 Benefits of more frequent dialysis in all studies
include improved control of hypertension (less anti-
hypertensive medications prescribed and lower systolic and
diastolic blood pressures)5–7,40 and hyperphosphatemia
(fewer phosphate binders prescribed and lower serum
phosphorus levels).5–7,41,42 In the FHN Daily and AKDN
studies, there was a significant decline in LV mass (13.8 g
(95% confidence intervals, � 21.8 to � 5.8 g) in the FHN
Daily study and 15.3 g (95% confidence intervals, � 29.6 to
� 1.0 g) in the AKDN study).5,6,43 In the FHN Nocturnal
study, however, there was a decrease in LV mass that was not
statistically significant (� 10.8 g; 95% confidence intervals,
� 23.7 to þ 1.8).7 In the FHN Daily Trial, there was an
improvement in the self-reported RAND Physical Health
Composite, self-reported score in the more frequent
hemodialysis (HD) group, but in the FHN Nocturnal study,
there was a small nonsignificant increase in this score in both
groups, perhaps related to the performance of hemodialysis
at home in both groups.5,7,44 In neither group, however, there
were improvements noted in objective measures of physical
performance.44 Neither of the nocturnal studies showed a
benefit in overall quality of life.7,45 Finally, in contrast to the
aforementioned observational, nonrandomized data, none
of the more frequent dialysis prescriptions resulted in
statistically significant improvements in the management
of anemia,5–7,46 depression,5–7,47 cognitive function,5,7 or
nutrition (as measured by serum albumin levels).5–7,48

There are several caveats to these findings, including their
generalizability, as patients in all three studies were
significantly younger compared with the average hemodia-
lysis patient, and more predominantly male patient.49 There
are also several significant differences between the FHN
Nocturnal and AKDN trials. First, the FHN Nocturnal Trial
included a larger proportion of incident patients (B50%)
compared with the AKDN Trial. Second, the median
duration of dialysis was higher in the AKDN Trial than in
the FHN Nocturnal Trial. Although the AKDN Trial did not
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report residual kidney function, the difference in both the
percentage of incident patients and the mean duration of
dialysis suggests that urine volume and renal solute
clearances were likely to have been substantially higher in
the FHN Nocturnal Trial, thus reducing the relative
contribution of the nocturnal hemodialysis regimen to total
solute and fluid removal. Third, the follow-up duration in
the AKDN Trial was only 6 months compared with 12
months in the FHN Nocturnal Study. Although cardiac
magnetic resonance imaging was used to measure LV mass in
both trials, the calculation of LV mass excluded papillary
muscle in the FHN Nocturnal Trial but included papillary
muscle in the AKDN Trial.7 Finally, it should be noted that
none of the published trials are powered to detect the effect of
frequent hemodialysis on clinical events.

Vascular access

In both the FHN studies, but not in the AKDN study, there
was an increase in vascular access events in the more frequent
arm of the study, although access survival was not affected in
either of the trials.5–7,50 Additional information regarding
access type and specific access complications should be
available in the future from both the FHN studies. In
addition, the role of catheter use in home-hemodialysis
patients needs to be better defined. Specifically, it is still
unclear what the optimal management is for the patient with
a current catheter who declines fistula placement, the patient
with a current fistula or graft who refuses self-cannulation, or
the magnitude of increased risk from either infection or air
emboli with a catheter.

Feasibility

Many issues need to be further delineated regarding the
feasibility of more frequent hemodialysis. First, there is great
variability in the setup of the home hemodialysis unit in
terms of staffing, equipment, training of patients, and home
hemodialysis policies. Staffs need to ensure that patients
adhere to their home dialysis protocols and that they follow
infection control in the home setting. There is also variability
in the provision of backup for the home hemodialysis
patient. The special problems associated with the more
frequent dialysis in patients managed at home include
adherence, possible need for phosphorus replacement, and
nutrition. The current experience mostly reflects the North
American activity; more information is needed regarding the
practice of more frequent dialysis therapies in Europe and the
Asia-Pacific region. Best practices for all of these areas need
to be combined to improve the standard of care received by
patients receiving more frequent dialysis therapies.

Little information is available about the potential relative
risks and benefits of different locations for more frequent
dialysis. These locations include staff-assisted in-center
dialysis, self-care in-center dialysis, and staff- or spouse-
assisted and patient provided home hemodialysis. The
choices available for an individual patient are likely to be

dependent on local limitations. There are no data to inform
on the risks and benefits of each of these locations.

There is also little information from randomized trials of
costs associated with more frequent hemodialysis. It is clear
that there is an upfront cost to training patients for home
hemodialysis, which is balanced over time by decreased
staffing costs. Less clear is the potential for savings for
medications or hospitalizations.51,52 None of the more
frequent dialysis trials have shown a significant decrease in
the use of erythropoietin in the more frequent arm of the
trial.5–7 We are unaware of the potential differences in costs of
intravenous vitamin D analogs with more frequent
hemodialysis. In addition, none of the randomized trials
have been large enough to provide meaningful data on the
potential for a decrease in hospitalizations. Finally, there are
few data on patient costs to implement home hemodialysis,
including home modifications for electricity, plumbing, and
carpentry, as well as additional monthly costs for water to
generate dialysate.53 There is, therefore, a clear need to
include economic analysis in any future studies of more
frequent hemodialysis regardless of the location where it is
delivered.

Home hemodialysis brings a unique set of burdens to the
patient and the patient’s spouse or dialysis helper.54 There are
variable rates of patient dropout reported in different regions
of the world, but few hard data to help explain these. Some
possible causes for variation include the degree of informatics
support, the availability of support groups for dialysis
patients, nurses and biomedical availability after hours, the
type of home hemodialysis machine used, and the availability
of respite in-center hemodialysis. Of equal importance is that
frequent dialysis in the clinical setting presents logistic
challenges such as local environment (comfort of chairs or
beds), travel time, and costs. Table 2 lists the workgroup’s
recommendations for research in this area, and the section in
this manuscript on ‘Technical Advances in Dialysis’ includes
a discussion on potential new methods of delivering dialysis
at home.

In summary, there is promising evidence suggesting the
benefits of frequent hemodialysis. However, one must also
consider the potential risks and barriers of implementing
frequent hemodialysis in a wider spectrum of patients. This
modality should be considered in patients who have LV
hypertrophy (especially in patients with little residual kidney
function), difficult-to-control hypertension, significant
hyperphosphatemia, or sleep apnea. The risks of increased
vascular access events need to be weighed against the benefits
of more frequent dialysis in individual patients.

DIALYSATE COMPOSITION AND TOXINS
Dialysate composition and water purity

In many dialysis units worldwide, dialysate is prepared
centrally and to standardized prescription, which can be
modified to an extent by most dialysis machines. More
recently, with an older and more complex group of patients
on long-term hemodialysis, in an attempt to reduce
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intradialytic and interdialytic complications and improve
long-term outcomes, individualized prescriptions have been
developed, evaluated, and used. In general, across all dialysate
components, homeostasis is achieved best with ‘middle-
range’ prescriptions.

Sodium

Sodium has a critical role in the regulation of weight,
extracellular fluid volume, blood pressure, and thirst. The
sodium concentration in plasma water exceeds that in plasma
by about 10 mmol/l, suggesting a large gradient driving
sodium into the dialysate.55 However, most of this apparent
gradient is eliminated by the effect of negatively charged
plasma proteins that reduce the diffusible sodium. Hence,
the plasma sodium concentration is generally used instead of
plasma ‘water’ sodium as the relevant concentration. This
plasma sodium concentration may be a bit less, on average,
compared with the diffusible, ionized sodium, and that the
correlation between the diffusible sodium and the plasma
sodium levels may differ a bit in individual patients.55

Sodium removal during HD can occur through convection
or diffusion. Current prescribing practices for chronic
intermittent HD rely primarily on convective losses
(B78%) and less on diffusive losses (B22%).56 Hypo-
thetically, a regular removal of 1 l of ultrafiltered plasma
water, considering a theoretical isotonic sodium
concentration of 140 mmol/l in the ultrafiltrate, would be
responsible for a removal of 140 mmol of sodium, equivalent
to 8 g of sodium chloride ingestion in each interdialytic day.57

The usual dialysate sodium level is between 135 and

145 mmol/l. In general, a high-sodium dialysate would be
above 141 mmol/l, whereas below 137 mmol/l would be
regarded as low sodium dialysate. The use of dialysate
sodium that is markedly lower compared with the
patient’s serum sodium results in a rapid reduction in
plasma osmolality and intravascular volume, leading to
disequilibrium symptoms and hypotension;57 however, when
used at smaller gradients, sodium will not flux into the
patient and, post dialysis, thirst is prevented without
undesirable hemodynamic events. Dialysate sodium higher
than serum sodium may help to maintain blood pressure
with ultrafiltration, but leads to post-dialytic thirst, fluid-
induced weight gain, and hypertension.58 Creating a positive
intradialytic sodium balance is effective in acutely reducing
the incidence of intradialytic symptoms, but it also sustains a
vicious cycle hampering the attainment of dry weight and
predisposes the patient to an increased risk of intradialytic
complications during the following dialysis session.59 An
isonatric hemodialysis may have a beneficial effect on blood
pressure and dialysis tolerance. A biofeedback system using
HDF with online (OL) regeneration of ultrafiltrate has been
specially developed with an isonatric mode maintaining an
equal serum sodium concentration between the start and the
end of the dialysis session, combined with ultrafiltration and
conductivity profiles.60 A clinical trial is in progress to show
these potential benefits with isonatric dialysis.60

Individualized therapy according to the set point, which
implies alignment of dialysate and serum sodium, has been
advocated.58,61,62 Sodium profiling could be considered
persistently symptomatic in patients because of intradialytic
hypotension or disequilibrium symptoms.63–65 However,
evidence supporting these approaches is weak. Studies have
been small, nonrandomized, short-termed, and limited to
surrogate outcomes.66,67 On first principles, the aim of a
dialysis treatment should be to remove the quantity of
sodium accumulated since the last session, but feasible and
accurate methods to achieve that aim are currently
unavailable. Alignment of the patient serum and dialysate
sodium concentrations assists in achieving this goal. Avoiding
sodium loading in hemodialysis patients is a cornerstone for
blood pressure and fluid status management.59

Potassium

Hypokalemia and hyperkalemia may lead to potentially life-
threatening cardiac arrhythmias. The usual dialysate potas-
sium level is 2 mmol/l. Lowest mortality has been associated
with the use of 3 mmol/l potassium.68 Low dialysate
concentrations, particularly those of 0 or 1 mmol/l, should
be avoided. If used, extreme caution should be exercised
because the rapid decline in plasma potassium concentration,
which occurs in the early stages of a dialysis treatment, is
arrhythmogenic. Hemodialysis is associated with the markers
of cardiac electrophysiologic aberrancy, particularly in
patients with underlying cardiovascular disease, and those
markers are amplified by a low potassium bath.69 Reducing
the blood-to-bath potassium gradient during dialysis

Table 2 | Research recommendations

� Observational data from registries providing additional information
about the risks and benefits of more frequent hemodialysis. At a
minimum, registries should collect prescription data that include the
frequency of dialysis per week and the number of hours per
hemodialysis session. Combining this data with laboratory information
and patient outcome data, including hospitalizations, change in
modality, and death, would provide much needed information on
patient outcomes, even accounting for the potential selection bias of
patients who are capable of choosing frequent hemodialysis.

� Clinical trials in more frequent hemodialysis could allow for meta-
analyses of specific frequent modalities. It is also not known whether
providing dialysis either four times a week or every other day would
provide some or most of the benefits shown with six times per week
dialysis, but at a lower cost.

� All studies should include careful baseline and periodic measurement of
residual kidney function.

� Much work needs to be done to provide a less complex method for
performing hemodialysis at home. Factors that are likely to limit the
number of patients who perform home hemodialysis include the need
to troubleshoot dialysis machines, the need for an appropriate partner
at home, acceptance of a complex piece of machinery, avoiding
hypotension, and avoiding access complications. More funding is
needed to develop a simpler, more user-centric hemodialysis machine
that will minimize the time needed for setup and take down, and
further decrease the risks of having an adverse event while performing
hemodialysis at home.
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mitigates the dialysis-associated electrophysiologic effects.
However, the cardiac electrophysiologic markers appear to
add little or nothing to the sudden death risk assessment and
so are of dubious predictive value. A recent study by Gabutti
et al.70 showed a rapid decrease in the concentration of serum
potassium during the initial stage of the dialysis following
reduction of dialysate potassium translates into a decrease in
systolic and mean blood pressure mediated by a decrease in
peripheral resistance. The risk of intradialytic hypotension
inversely correlates to the potassium concentration in the
dialysate. The use of 1 mmol/l potassium dialysate in a
chronic hemodialysis setting has been associated with an
increased incidence of cardiac arrest.71 Similar to sodium,
potassium profiling has been suggested, but the evidence is
weak. Studies by Redaelli et al.72 and Santoro et al.73 showed
potential benefits of potassium modeling in reducing
ventricular arrhythmias and complex arrhythmias,
respectively. However, in the study by Redaelli et al.72, the
total drop in the serum potassium concentration was not
different between the fixed and variable potassium dialysates,
whereas the study by Santoro et al.73 includes only a small
number of 30 subjects. In contrast, longer dialysis sessions
using a fixed potassium dialysate of 2 mmol/l can remove
potassium at lower dialysate/plasma gradients.74 Taken
together, avoidance of high potassium concentration
gradients between the dialysate and blood could have
favorable hemodynamic consequences.72

Calcium

Lower dialysate calcium (1.25–1.5 mmol/l) may reduce the
risk of hypercalcemia, but may lead to negative calcium
balance, hyperparathyroidism, and intradialytic hypotension.
Increased attention has been paid recently to integrating
choice of dialysate calcium level into the understanding of
calcium balance, which is determined by diffusive intradia-
lytic fluxes, the dietary calcium content, and in the
administration of calcium-containing phosphate binders, as
well as by dosage of vitamin D analogs.75 If hypokalemia is
coexistent, then critical QTc prolongation may occur.

Higher dialysate calcium levels (1.5–1.75 mmol/l) may
improve hemodynamic stability during dialysis, but may also
increase the risk of hypercalcemia and vascular calcification.
Alappan et al.76 studied the addition of high-calcium
(1.75 mmol/l) dialysate to a group of patients with intra-
dialytic hypotension, who are also treated with cool dialysate
and midodrine. They found that the addition of high-
calcium dialysate in this context further improved hemo-
dynamic stability in patients with intradialytic hypotension.
However, this therapy did not reduce symptoms or interven-
tions required for intradialytic hypotension. Hypercalcemia
occurred in 22% of the patients.76

The association of dialysate calcium with vascular
calcification has been studied in a trial evaluating three
different concentrations of dialysate calcium at 1, 1.25, and
1.50 mmol/l, respectively.77 These investigators found that
dialysate calcium and acute changes in the serum-ionized

calcium concentration, even within the physiological range,
were associated with detectable changes of arterial stiffness
and central pulse-wave profile. Ionized calcium decreased
with a dialysate calcium concentration of 1.00 mmol/l and
increased with a dialysate calcium concentration of
1.50 mmol/l, but did not change with a dialysate calcium
concentration of 1.25 mmol/l. The percentage increase in
carotid–femoral pulse-wave velocity and carotid–radial pulse-
wave velocity was associated with an increase in the level of
ionized calcium.77 A recent study by Gotch et al.75 concluded
that in 320 dialysis patients, the dialysate calcium required
for neutral calcium mass balance, wherein calcium removal
during dialysis was equal to calcium accumulation between
the dialyses, waso1.25 mmol/l and averaged about
1.00 mmol/l. Bosticardo G et al.78 recently showed how the
use of 1.25 mmol/l dialysate calcium concentration in
patients with predialysis blood-ionized calcium in the
normal range allows stable blood-ionized calcium levels
over the dialysis sessions, and approximately neutral dialysis
calcium mass balances. At the same time, the use of
1.5 mmol/l dialysate calcium significantly increases blood-
ionized calcium levels during the session and induces a
marked calcium gain, suggesting that 1.5 mmol/l dialysate
calcium should be used with caution.

Basile et al.79 studied the effect of three dialysate
total calcium concentrations (2.5, 2.75, and 3.0 mmol/l) on
parathyroid hormone and calcium balance in highly
controlled single dialysis session studies using a crossover
design. They found that dialysate total calcium concentration
of 2.75 mmol/l might be preferable, because it is able to give a
mildly positive total calcium mass balance while maintaining
normal plasma water�ionized calcium levels, and not
stimulating short-term parathyroid hormone secretion but
long-term studies are needed to confirm the results.

Given that dialysate calcium is only one component in the
total calcium balance, dietary calcium, calcium-containing
phosphate binders, and the use of vitamin D or its analogs
also need to be considered when dialysate calcium is
prescribed. Studies of dialysate calcium in isolation do not
provide a firm basis for clinical decision making.80

Glucose

Hemodialysate solutions often contain high concentrations
of glucose (up to 200 mg/dl).81 The historical reasons for the
addition of glucose to the dialysate included the following:
(1) enhancing ultrafiltration and (2) minimization of
nutritional (caloric) losses during dialysis. Recent evidence
suggests that exposure to high levels of glucose may be
proinflammatory and their use should be re-examined.81,82

Dialysate glucose concentrations of 100 mg/dl are likely to be
safe. Higher values may predispose to the metabolic
syndrome. Glucose-free dialysate may be beneficial
metabolically and possibly less inflammatory. However,
glucose-free dialysate may be associated with hypoglycemia,
particularly in poorly nourished patients, insulin-requiring
diabetics, or in acute hemodialysis settings.
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Buffering

Bicarbonate dialysate is now the fluid of choice. Bicarbonate
is the primary buffer that traditionally has been prescribed in
the range of 33–38 mmol/l. The concentrate of acetate used is
variable and contributes to the total buffering, with a range of
4–8 mmol/l, whereas 5–6 mmol/l is most widely used and
appears to be safe, providing these sources of bicarbonate
concentration are considered when the dialysate prescription
is written. The aim of intradialytic buffering is to avoid post-
dialysis alkalosis and acidosis before the next session. Net
acidosis may lead to a catabolic state, and insulin resistance
and bone loss. Net alkalosis may lead to reduced cerebral
blood flow, cramps, and fatigue. Recent observational data
have demonstrated that high dialysate bicarbonate
(435 mmol/l) may be associated with adverse outcomes.
Modeling dialysate bicarbonate is of uncertain benefit,
but lower bicarbonate may assist patients with intradialytic
hypotension.83 The benefits of using citrate as a buffer are
uncertain. Gabutti et al.84 found that citrate-based
bicarbonate dialysate compared with acetate-based
bicarbonate dialysate had a positive impact on dialysis
efficiency, acid–base status, and hemodynamics in selected
patients on hemodialysis. A recent study also showed that
hemodialysis with acetate-free citrate containing dialysate
may improve a patient’s clinical status with intractable
metabolic acidosis, hyporesponsiveness to erythropoiesis-
stimulating agent, and malnutrition that were not normal-
ized in hemodialysis with acetate-containing dialysate.85

Cheng et al.86 have studied a dialysate, with a citrate level
of 1 mmol/l as generated by adding citrate to the
conventional liquid ‘bicarbonate concentrate’ system.
Significantly less thrombus formation in the venous air
traps was detected in the citrated dialysate patients.

Water purity and quality

Quality standards for water and concentrates used to produce
dialysate are well established.80,87 The European Renal
Association standard stipulates that microbiological
contamination of the delivered water should comply with
the recommendations of the European Pharmacopoeia
bacterial count of � 100 colony-forming unit/ml and
endotoxin content of � 0.25 endotoxin unit/ml. All
convective methods require ultrapure water (endotoxin
level o0.03 EU/ml). Regular monitoring of water quality,
preferably monthly, should be performed. Ultrapure dialysate
is defined as a bacterial count o0.1 colony-forming unit/ml
and an endotoxin level o0.03 endotoxin units/ml.80 This
endotoxin level is the sensitivity threshold for the simplest of
the limulus amoebocyte lysate assays. Recently, Europe, the
United States, and Japan endorsed the upgrading of water
and dialysate quality for all dialysis modalities. Guidelines
supporting the regular use of ultrapure dialysis fluid for all
hemodialysis modalities have been produced.88 To have such
a high grade of microbiological purity in the dialysis fluid,
several prerequisites have been identified: (1) an adequate
water treatment and distribution system; (2) cold sterilizing

ultrafilters on the inlet dialysis fluid circuit of the dialysis
machines; (3) sensitive assays for microbiological monitoring
with protocols of hygienic rules for disinfecting water and
dialysate pathways; and (4) a broad-based quality-control
and assurance process.88

Bacterial products, such as endotoxins, fragments of
endotoxin, peptidoglycans, and fragments of bacterial DNA,
can cross the pores into the bloodstream. These are all potent
inducers of cytokines and stimulators of the acute-phase
response contributing to chronic inflammation.89,90 Recently,
circulating endotoxins have been shown to have potential
impact on survival in patients undergoing peritoneal dialysis
or hemodialysis.91,92 The introduction of ultrafiltered
dialysate was associated with a significant reduction in
plasma b2-microglobulin concentration and a significant
improvement in nutritional status, assessed by plasma
albumin concentration and creatinine generation rate as a
marker of muscle mass.93

In summary, given the limited amount of evidence
supporting the various strategies in titrating dialysate
concentrations in patients receiving three-times-a-week
hemodialysis, we suggest several dialysate strategies that need
to be tested in randomized controlled trials. Potential
questions that could be addressed include the following: (1)
the use of individualizing dialysate sodium (relative to
sodium set point) versus standard care, (2) minimization of
potassium gradient, and (3) customization of dialysate
calcium according to calcium-balance measurements.

TECHNICAL ADVANCES IN DIALYSIS
Can improvements in dialyzer technology increase uremic
toxin clearance?

Dialyzer technology has evolved to allow production of high-
flux membranes, with both increased water (ultrafiltration
coefficient 420 ml/h/mm Hg) and solute removal.94 Small
solute clearances can be increased by fiber surface
undulations and internal constriction, or other designs to
create an internal vortex flow.95,96 Larger solute clearances
can be achieved by increased internal diafiltration by creating
oscillations in the transmembrane pressure,97 creating
resistance to blood flow within the dialyser, either by
reducing the internal diameter of the fibers or by increasing
the dialyser length.94 Although nanotechnology-produced
dialyzer membranes have both increased solute removal mass
and enlarged the spectrum of solutes cleared, many are
predominantly intracellular or bound to plasma proteins. As
such, the rate-limiting step is often the movement from
intracellular sites to the plasma water or the rate of
dissociation from plasma proteins. As such, the clearance of
such solutes is time-dependent and can potentially be
overcome by longer and more frequent dialysis sessions.98

Despite these advances, current dialysis strategies only
remove a fraction of the spectrum of putative uremic toxins
largely because of these being bound to the protein.99 Further
increases in membrane pore size with high-permeability
dialyzers not only increase larger solute clearances, including
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free plasma light chains, peptides, and small proteins, but
also result in albumin losses.100 Although removal of protein-
bound toxins is increased with these high-permeability
membranes, this is proportional to protein losses.101

Alternative strategies to increase removal of larger and
protein-bound uremic toxins102 include alteration of the
dialyzer surface characteristic to increase adsorption103 and
the construction of composite membranes containing carbon
particles or specific sorbents to also increase adsorption of
toxins.104 Further work is required to clarify the toxicity of
individual uremic retention products102 to determine
whether groups or classes should be preferentially targeted.
As some of the putative uremic toxins are derived from
gastrointestinal bacterial metabolism, strategies aimed to
change gastrointestinal bacterial flora may be an effective
alternative strategy.

Do advances in hemodialysis machine technology translate
to improved patient outcomes?

Intradialytic hypotension is the commonest complication in
routine outpatient hemodialysis practice,105 and reduction in
myocardial perfusion during hemodialysis has been associated
with increased mortality risk.106 Repetitive episodes of
hypotension also risk cerebral ischemic damage and may also
potentially cause ischemia to other perfusion-dependent organs,
including the pancreas and the gut. Maintenance of the initial
body temperature at the commencement of dialysis will
minimize intradialytic instability and complications, but in
those patients who develop significant intradialytic hypotension,
lowering the dialysate temperature may be beneficial.107

Cool-temperature dialysate typically uses 35 1C. Deliberate
cooling of the dialysate was shown to reduce intradialytic
hypotension108,109 and diminishes cardiac stunning compared
with isothermic dialysis110 and risk of hypotension.111

Reduction in plasma water due to ultrafiltration increases
hematocrit and blood density, which can be monitored using
changes in optical or ultrasonic properties during treatment,
as is used in relative blood volume monitoring (rBVM). If the
rate of plasma water removal exceeds the compensatory
refilling rate, then the slope in rBVM becomes steeper.112

However, multicenter trials have failed to show a reduction in
intradialytic hypotension with the use of rBVM.113 Similarly,
passive biofeedback systems that stopped ultrafiltration at a
preset rBVM or rate of decline, failed to prevent intradialytic
hypotension because of patient intratreatment variability114

and lack of correlation between the nadir rBVM and
hypotension.115 More recently, active biofeedback devices
have been introduced that vary the ultrafiltrate rate and
dialysate sodium concentration according to the response
in rBVM. Although the use of these devices has been reported
in single-center studies, to reduce serious intradialytic
hypotension,116,117 they did not prevent hypotension. As
hematocrit differs between capillaries and the capacitance
arteriovenous (AV) system,118 small capillaries constrict first
in response to ultrafiltration, thus returning a relatively lower
hematocrit blood to the central vessels. As such, the change

in rBVM lags behind these compensatory changes in
ultrafiltration.119 It is not known whether repetitive
intradialytic hypotension adversely affects cardiac and
cerebrovascular disease, or residual renal function, or
whether patients with preexisting vascular disease are more
prone to intradialytic hypotension.120

Is OL-HDF the future for standard three-times-a-week
therapy?

OL-HDF is defined as a combination of diffusive and
convective solute transport using a high-flux membrane with
an effective ultrafiltration rate of at least 20% of the blood-
flow rate in combination with OL-generated sterile and
nonpyrogenic solution for fluid substitution.

Compared with standard conventional HD, the documen-
ted advantages of OL-HDF include a higher removal rate of
higher molecular weight solutes, including phosphate,
b2-microglobulin, and some protein-bound uremic com-
pounds, which may translate into sustained lower serum
b2-microglobulin and phosphate levels.121–123 In many but
not all studies, OL-HDF was further associated with a lower
incidence of intradialytic hypotension, improvements in
erythropoietin responsiveness, and nutritional status, as
well as prevention of inflammation and better preservation
of residual renal function.11,124,125 These effects may be due
to HDF itself or secondary to improved dialysate purity and
cooling because of high-volume fluid infusion.

Despite these potential benefits, HDF has not found
widespread adoption. Reasons for the reluctance in applying
HDF to a larger patient population are multiple and include
a lack of convincing cost-saving potential, safety concerns
using a large volume of OL-prepared substitution fluid, and
(in the United States at least) regulatory issues preventing
OL fluid preparation. In addition, vascular access may be
inadequate to match minimum blood-flow requirements,
staff needs to be specifically educated, and OL-HDF
machines are more expensive.

The main reason may be a lack of convincing evidence of a
survival benefit compared with standard conventional HD.
Several large, randomized controlled studies comparing HDF
with standard conventional high- or low-flux HD are
currently ongoing or have been concluded recently, such as
the CONTRAST Study.13,14 Although no overall significant
survival difference between OL-HDF and either low- or
high-flux HD was observed in either of these two studies,
secondary on-treatment analyses in both studies indicate that
higher delivered convective volumes (417–22 l per session)
are independently associated with a reduced all-cause
mortality risk.

In the future, an international consensus definition
of target ultrafiltration volume, as surrogate of convective
dose, is needed to objectively assess the potential impact of
convective therapies. Furthermore, in the absence of a general
survival advantage with HDF, target populations that benefit
mostly from this treatment form need to be defined, and
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potential long-term side effects of OL-HDF, such as chronic
nutrient depletion,126 need to be elucidated.

Is the wearable dialysis device technically feasible and a
reality?

Wearable or implantable devices would potentially allow
patients to benefit from longer treatment durations with
greater solute clearance and improved volume balance.
However, wearable devices also have to maintain electrolyte
and acid–base homeostasis. Although several groups have
developed wearable devices on the basis of peritoneal dialysis
with regeneration of spent dialysate using carbon and other
sorbents, definitive clinical trials remain awaited.127,128 The
development of a truly wearable hemodialysis device has been
a goal since the 1970s, and despite many attempts there has
only been one recent ‘proof-of-concept’ clinical trial,129

which showed that such a device would be predicted to
achieve greater small- and middle-sized, water-soluble solute
and protein-bound toxin clearances compared with the
standard three-times-a-week conventional hemodialysis.97

However, many hurdles have to be overcome before a
proof-of-concept device can be brought to clinical practice.

Implantable devices depend upon a membrane mimicking
glomerular filtration, producing an ultrafiltrate, which then
has to be processed, reabsorbing the majority of water and
electrolytes on one hand and excreting a concentrated waste
on the other. Until now, these devices are restricted to
laboratory testing or early-phase animal trials.130 Any
wearable dialysis device should currently be considered as a
complementary and challenging tool, but with uncertain
position in clinical CKD management.

Status of the implantable bioartificial kidney

The bioartificial kidney aims to combine the glomerular
membrane-sieving function with the tubular metabolic and
endocrine function of the nephron.131 One component of the
bioartificial kidney, the renal tubular cells containing the
renal assist device, has been applied in two exploratory pilot
trials in patients with acute kidney injury and multiorgan
failure. The renal assist device is based on a standard
hemofiltration cartridge containing renal tubular cells grown
along the lumen side of the hollow fibers. The renal assist
device is connected in series to a conventional hemofilter in
an extracorporeal blood circuit. One pilot trial, designed to
demonstrate safety and clinical efficacy of the device, was
suspended after an interim analysis because of an
unanticipated high survival rate of the sham device arm of
the study, which may have been related to the use of citrate as
an anticoagulant in the placebo arm, compared with heparin
in the active arm.132 Proof-of-concept, demonstration of
durability and efficacy, long-term feasibility, cost and clinical
benefits, as well as exclusion of potential immunogenicity will
be required before these devices can be applied on humans.
Pluripotential stem cells have been shown to accelerate renal
recovery from acute kidney injury in animal models,133 and
have been seeded on extracorporeal bioreactors, but remain

experimental, as concerns have been raised about interstitial
fibrosis in the longer term. Currently, cell-based technologies
have been unable as yet to recreate a human glomerulus,
let alone a nephron unit.

Are there technical/clinical tools to improve the present
vascular access outcome?

Clinical tools. Vascular access management is a way of
improving hemodialysis outcomes. Currently, AV vascular
accesses are unsatisfactory because of thrombosis or insuffi-
cient maturation. There was consent that vascular access
outcomes may be improved by unifying vascular access
pathways across centers and countries, and by increasing the
number of surgeons and dialysis physicians with expertise in
the field of access creation and management to establish best
clinical practice.134,135 Despite a lack of supportive studies, it
was generally felt that preoperative vascular mapping and
examination of vessel size are useful adjuncts and should be
better promoted among dialysis physicians. There was
general consensus that adequate maturation time up to
4 weeks should be allowed before first puncture. At 4 weeks
after access placement, there should be an assessment for the
degree of maturation and care pathways established in case of
inadequate fistula-flow development.134 So far, there have
been no established medical therapies for the enhancement of
maturation and prevention of fistula stenosis. It was agreed
that cannulation skills and expertise are of utmost
importance and are required for both dialysis physicians
and nurses.

The role of ultrasound-assisted first cannulation was
debated at the conference and it was concluded that this
question should be addressed by clinical studies. It was
pointed out that vascular access blood-flow rate may
negatively affect cardiac function as well as access survival
due to turbulence-induced intima proliferation. Further
studies in these areas are eagerly awaited.

Emerging technical/medical tools. Pharmacologic treat-
ments to improve vascular access outcome include use of
aspirin and other antiplatelet drugs. Extended-release dipyr-
idamole plus low-dose aspirin prolongs primary unassisted
graft patency of newly created hemodialysis AV grafts.136

However, the beneficial effects of anticoagulants and
antiplatelet drugs may be counteracted by an increased
bleeding tendency and mortality risk.137

There have been a number of different approaches adopted
to improve AV graft patency, ranging from newer nanotech-
nology-manufactured synthetic grafts, using newer polymer
materials and designs, to tissue-engineered grafts. Several of
them are now entering clinical trials, and preliminary data to
date from completely autologous vascular grafts grown in
culture were reported to have a fourfold reduction in graft
event rate in a small cohort of 15 patients followed up over a
period of 3 months to 3 years.138 Longer term follow-up,
with greater patient recruitment, is required to assess
outcomes of this promising approach weighed against the
long time period for culture tissue and high cost. This and

Kidney International (2013) 83, 359–371 367

CT Chan et al.: Innovation in blood purification m e e t i n g r e p o r t



other tissue engineering approaches appear to be fascinating
and promising approaches for improving vascular access
creation and patency.

Other approaches include local drug delivery, such as
drug-eluting perivascular wraps. A recent study of paclitaxel-
eluting perivascular wrap was suspended because of an
increased rate of local infection. An initial phase II study with
Sirolimus-eluting wraps showed primary unassisted AV graft
patency of 75% and 38% at 1 and 2 years, respectively.139

SUMMARY

Despite more than 5 decades of chronic dialysis, 5-year
survival remains lower than that for many solid-organ
malignancies and provides a very strong stimulus to explore
new innovations and techniques in blood purification. Over
this period, numerous technological advances have helped to
improve dialysis delivery and allow the treatment of high-risk
patients. The individualization of dialysis prescription and
dialysate composition with optimization of water quality may
improve intradialytic morbidity, and perhaps mortality, when
coupled with improved clinical practices and quality-control
processes. Novel approaches to increase dialysis dose delivery
and fluid and toxin removal by augmentation of frequency
and/or duration of hemodialysis, in combination with
convective or adsorptive techniques, represent a promising
strategy, which warrant further testing in definitive rando-
mized controlled trials.

Although technological advances have made it possible to
successfully treat an increasing number of older, high-risk
hemodialysis patients, technology alone will never replace
clinical judgment and skills. Improved clinical practice,
adopting best practices, strict quality-control processes, and
individualized treatment regimens will represent the key to
success in improving hemodialysis outcomes.
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