

TOPIC 3 – GENETIC TESTING

Fiona Karet, Shih-Hua Lin, Rosa Vargas-Poussou

Disclosure of Interests

None

Genetic testing – Gitelman syndrome

- 1. Utility
- 2. Technique
- 3. Familial studies

What is the validity and clinical utility of genetic testing in the proband?

- 1. Diagnosis confirmation
 - Sensitivity: 65~80%
 - Specificity: 90~100%
- 2. Natural history
 - CKD (6 % Tseng MH, JCEM 2012)
 - HTA (44% Berry MR, NDT 2013). Largest cohorts ? Mechanism?
 - Chondrocalcinosis

- 3. Phenotype/genotype correlation
 - Type of mutation
 - Severe phenotype and splicing mutations (Rivera-Muñoz, JASN 2007)
 - HTA and C-terminal domain mutations (Berry MR, NDT 2013)
 - Sex
 - More severe in males (Rivera-Muñoz, JASN 2007; Tseng MH, JCEM 2012)
 - More severe in females (Berry MR, NDT 2013)

- 4. Early and appropriate treatment
 - Effect on long-term evolution and complications ?
- 5. Diagnosis of exclusion
 - Psychiatric patients
 - Sjögren syndrome
 - Long QT syndrome

- 6. Genetic counselling
 - Siblings
 - 25% risk
 - All? Only siblings with biological abnormalities ?
 - Pregnancy
 - Is the father carrier ?
 - Prenatal diagnosis : feasible but not recommended

Genetic testing – Gitelman syndrome

Genetic testing – Gitelman syndrome

Mutation detection rate: 65-80% Only one heterozygous mutation: 11-26% *CLCNKB* mutations: 2-13%

Genetic testing – Gitelman syndrome Type of mutation

85%

Genetic testing – Gitelman syndrome Type of mutation

SLC12A3 – Mutations

Mutations in human thiazide-sensitive Na+-CI- cotransporter TSC reported in patients with Gitelman's disease.

Gamba G. Physiol Rev 2005;85:423-493

SLC12A3 – Mutations

Tseng MH, Yang SS, Hsu YJ, et al. J Clin Endocrinol Metab. 2012

Genetic testing – GS – Technique

- 1. Sequencing
 - Sanger
 - NGS
- 2. Large rearrangements research
 - MLPA
 - QMPSF, qPCR
- 3. Transcript analysis

Genetic testing – GS – Technique

- 1. First SLC12A3
 - 1. Targeted exons in some populations (i.e. "Gypsies")
- 2. Second: CLCNKB
- 3. Exceptions (CLCNKB first): patients with
 - 1. renal tract calcification;
 - 2. Hypercalciuria
 - 3. dependence on indomethacin as part of their therapeutic regimen

Genetic testing – GS – Family studies

- 1. Family segregation
 - In compound heterozygous: different alleles
 - Three mutations
 - French cohort 3.5%
 - Taiwan cohort 12 %
 - Pseudo-dominant inheritance
 - Interpretation of VOUS

Genetic testing – GS – Family studies

- 2. Parents:
 - 1. Both ?
 - 2. Mother?
 - 3. Father ? (paternity issues)

Genetic testing – GS – Family studies

- 3. Siblings :
 - First : clinical and biochemical evaluation
 - SG suggestive: genetic test to confirm.
- 4. Carrier testing of the proband's partner
 - Not indicated, frequency of heterozygous 1%
 - Exception if the partner is a relative: couple of heterozygous carrier and GS patient: risk 50%

©2005 by American Physiological Society

- 1. Frequency
 - 1. 1%; 3%?
- 2. Phenotype
 - Increase in dietary salt intake
 - Lower blood pressure (adjusted for age and gender)

Cruz DN 2001, Fava C. 2008

- 3. But GS patients can develop hypertension
 - 44% : Berry MR, 2013
 - Prevalence in largest cohort

Clinical Research Protocol HEPHYGI - Clinical significance of *SLC12A3* heterozygous mutations (2013-2016, funded by PHRC)

Population : Blood Pressure : GS Patients -/- n= 80 Clinic, BP Self-Measurement, ECG Na K homeostasis : Relatives +/- n= 80 Controls +/+ n= 80 Blood, 24h Urine, renin, aldosterone Mg, Ca homeostasis : Multicentric: 6 French centres Blood, 24h Urine, bone turnover markers Vessels: Pulse wave analysis, Central BP Metabolism : The inclusion process started in November Height, weight, W/H ratio Glucose (OGTT) and lipid metabolism, proteinuria 2013. Other researchs: January 2016: 83% of inclusions (200 Biobanking : Blood, Plasma, Urine, individuals)

