Present & Future Role of Molecular Genetic Diagnostics in ADPKD

Peter C. Harris, PhD Mayo Clinic, Rochester, MN

KDIGO Controversies Conference on Autosomal Dominant Polycystic Kidney Disease (ADPKD)

Edinburgh, Scotland Friday, January 17, 2014

Disclosure of Interests

Otsuka Pharmaceuticals: Research grant

Mutations to PKD1 or PKD2 cause ADPKD

4 5 6 7 8 91011121314 15

1kb

Hughes et al Nat Genet (1995); International Consortium, Cell (1995); Mochizuki et al Science (1996)

The *PKD1* region is duplicated in 16p13.1

6 PKD1-like pseudogenes; up to 99% identity to PKD1

European Consortium, Cell 1994

Sequence similarity between *PKD1* and the six pseudogenes

PKD1 exon23 PKD1P1 PKD1P2 PKD1P3 PKD1P4 PKD1P5 PKD1P6	201 200 201 200 200 200 200	A C C T G A C C T C T G C C C T C A T G C G C A T C C T C A T G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A C G C C C A T C G T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A T G C G C A T C C T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A C G C C C A T C C T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A T G C G C A T C C T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A T G C G C A T C C T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A C G C C C T C C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A C G C G C T C C C G C G T G C T C A A C A C C T G A C C T C T G C C C T C A T G C G C A T C C T C A C G C G C T C C C G C G T G C T C A A C	250 249 250 249 249 249 249 249
PKD1 exon23 PKD1P1 PKD1P2 PKD1P3 PKD1P4 PKD1P5 PKD1P6	251 250 251 250 250 250 250	GA GGA GC C C C T GA C G C T G G C G G G G C G A G G A G A T C G T G G C C C A G G G C A A G C G GA G G A G C C C C T G A C G C T G G C G G G G T G A G G A G A T C G T G G C C C A G G G C A A G C G GA G G A G C C C G T G A C G C T G G C G G G G C G A G G A G A T C A T G G C C C A G G G C A A G C G GA G G A G C C C C T G A C G C T G G C G G G G T G A G G A G A T C G T G G C C C A G G G C A A G C G GA G G A G C C C C G T G A C G C T G G C G G G G C G A G G A G A T C A T G G C C C A G G G C A A G C G GA G G A G C C C C T G A C G C T G G C G G G G C G A G G A G A T C A T G G C C C A G G G C A A G C G G A G G A G C C C C T G A C G C T G G C G G G G T G A G G A G A T C G T G G C C C A G G G C A A G C G G A G G A G C C C C T G A C G C T G G C G G G G C G A G G A G A T C G T G G C C C A G G G C A A G C G G A G G A G C C C C T G A C A C C C T G G C G G G G G G C G A G G A G A T C G T G G C C C A G G G C A A G C G G A G G A G C C C C T G A C A C C C T G G C G G G G G G G C G A G G A G A T C G T G G C C C A G G G C A A G C G G A G G A G C C C C T G A C A C C C T G G C G G G G C G A G G A G A T C G T G G C C C A G G G C A A G C G	300 299 300 299 299 299 299
PKD1 exon23 PKD1P1 PKD1P2 PKD1P3 PKD1P4 PKD1P5 PKD1P6	301 300 301 300 300 300 300	CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T CT C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T C T C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T C T C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T C T C G G A C C C G C G G A G C C T G C T G T G C T A T G G C G G C G C C C C A G G G C C T G G C T	350 349 350 349 349 349 349

Sanger screening protocol for ADPKD

- 5 locus specific amplicons cover the duplicated part of *PKD1*
 - *PKD1* exons and flanking intronic regions: 46 amplicons
 - PKD2 exons and flanking intronic regions: 17 amplicons
 - Total 63 amplicons

High level of allelic heterogeneity in PKD1

Mutation Types in ADPKD: HALT PKD population PKD1

Update to ADPKD mutation database (PKDB): Version 2.95 <u>http://pkdb.mayo.edu</u>

Total 2544 variants
 – PKD1 = 2293

 $\mathsf{PKD2} = \mathbf{251}$

- 1425 Likely Pathogenic mutations (2020 families)
 PKD1 = 1250 (1677 families)
 PKD2 = 175 (343 families)
- 189 Indeterminate change
 PKD1 = 181; PKD2 = 16
- 867 Neutral Polymorphisms

 PKD1 = 911 (94%); PKD2 = 58 (6%)

Diagnostics of ADPKD usually performed by renal imaging

 Imaging methods can usually accurately diagnose ADPKD in adults

- Imaging diagnostics less reliable in younger adults
 - Especially in families with less severe disease
 - *PKD2* and hypomorphic *PKD1* mutations

Gene-based diagnostics for ADPKD

- Genetic testing may be helpful when imaging results are equivocal and firm diagnosis required
 - Living related donors
 - Confirming negative diagnosis in young potential donor when imaging results may be unreliable
 - Clarifying the diagnosis in a potential donor when 1 or 2 cysts detected by imaging
- Individuals with a negative family history and/or an unusual disease presentation: to clarify the diagnosis
 - Early onset ADPKD
 - Mild PKD
 - Atypical radiological presentation
- Once therapies available: testing of young patients to obtain a firm diagnosis before starting treatment

Knowing the gene and the mutation are of prognostic value in ADPKD

Gene-based prognostics in ADPKD

- Gene and mutation data can provide information about the severity of disease
 - Truncating *PKD1* mutations associated with more severe disease
 - PKD2 mutations associated with milder disease
 - Hypomorphic *PKD1* mutations associated with milder disease
- Prognostic information can help patient management
 - Planning for ESRD
 - Provide reassurance for those with predicted less severe course
 - Select patients for clinical trials
 - Select patients treatments

Resolve complex ADPKD cases

- Negative family history
 - Determine if disease is ADPKD
 - Especially with mild disease
 - *De novo* mutation
 - Reduced risk in sibs
 - Mosaicism can complicate risk prediction
- Early onset cases
 - Some due to combinations of ADPKD alleles
 - Of value for avoiding further early onset cases in a family
- Marked intrafamilial variation
 - Allelic/genic combinations
 - Mosaicism

Hypomorphic *PKD1* allele in homozygosity: extreme intrafamilial phenotypic variability

Rossetti et al 2009 Kl

Family with PKD1 and PKD2 mutation: intrafamilial phenotypic variability

Patients with both mutations have more severe disease

II:2 42y

Kidney

Liver

Gainullin in preparation

MLPA assay for PKD1 and PKD2

-3-4% of mutations are large rearrangements

-PKD1 deletion of exons 3-9, 40% mosaic

Screening for mosaics employing next generation sequencing

ADPKD patient with mild disease (S.Cr. 1.9 at 77y) and a negative family history was mutation negative by Sanger sequencing

NGS analysis identified the nonsense mutation *PKD1*: p.R4228X at a low level

In utero onset ADPKD

 Rarely (<1%) ADPKD presents *in utero* with enlarged and echogenic kidneys in a family with otherwise typical ADPKD

These cases can be confused with ARPKD

- Increased risk of recurrence in sibs
 - Suggests simple genetic mechanism

Early-onset disease associated with co-inheritance of a truncating and hypomorphic *PKD1* allele

Rossetti et al 2009 Kl

Other explanations for early onset ADPKD

- Not all EO cases due to co-inheritance of ADPKD alleles
- Co-inheritance of mutations at other loci may cause EO PKD
 - -HNF1B
 - PKHD1
- Analysis of candidate panel or whole exome screen may be appropriate in unresolved EO cases

Example of combination of *PKD1* and *HNF1B* allele causing EO PKD

Gene-based diagnostics in ADPKD is complex

- Genetic and extreme allelic heterogeneity

 Completely screen *PKD1* and *PKD2* required
- Segmental duplication of PKD1
 - Locus specific enrichment required
 - Exon capture methods unreliable
- Many variants of uncertain significance
- Many PKD1 non-truncating changes hypomorphic

- Identification of hypomorphic alleles difficult

- Genetic test is expensive and not always informative
- Reports often uninformative and difficult to understand
 - Clinical testing only available through one vendor in US:
 - Athena Diagnostics ~\$5000 with MLPA testing
 - Recent Supreme Court ruling may open US market

Next-generation sequencing allows rapid analysis of multiple patient samples

- *PKD1* and *PKD2* amplified as 14 long-range products
 - exon capture unreliable for *PKD1* because of genomic duplication
- Potential for higher throughput and reduced cost
- Mutation detection rate likely to be comparable
- Introns, UTRs and promoters could also be screened

Molecular Diagnosis of Autosomal Dominant Polycystic Kidney Disease Using Next-Generation Sequencing

Adrian Y. Tan,* Alber Mic Daniel Levine, [§] and Hanr	chaeel,* Genyan Liu,* Olivier El 1a Rennert*	emento, [†] Jo Tablı Dete	n Blumenfeld, [‡] e 4 NGS Anal ction)	[§] Stephan ytic Sensit	ie Dona ivity and	hue, [§] Tom F Specificity	Parker, [§] (Variants	
	Sanger sequencing			uencing				
		NGS		V al (1	ariant lleles positive)	Reference alleles (negative)	Total	
		Variant alleles (positive) Reference alleles (negative) Total			48 2 50	0 1825 1825	248 1827 2075	
Table 6 Comparison of Reage	ents, Sequencing Costs, and Time o	of Labor for S	anger Sequencin	g and NGS				
			Cost (\$)				Labor time	
Method	Purpose	Quantity	Per sample	Per run	Per	subject	(days)	
Sanger sequencing ($N = 25$)	LR-PCR (PKD1)	250	2.40	600.00	0 24	4.00	5	
	Standard PCR (PKD2)	400	1.50	600.00 2		4.00	4	
	Purification	200	2.40	480.00 19		9.20	1	
	Sequencing primers	3050	0.10	305.00 12		2.20	NA	
	Sanger sequencing	1600	3.00	4800.00 1		2.00	5	
	Data analysis	NA	NA	NA	NA NA		4	
	Total			6785.00	0 273	1.40	19	
NGS ($N = 25$)	LR-PCR (PKD1 and PKD2)	250	1.45	362.50	0 14	4.50	2	
	LR-PCR product quantification	250	0.12	30.00	D 1	1.20	0.5	
	DNA fragmentation	25	6.50	162.50	50 6.50		0.5	
	Library preparation	25	20.00	500.00	0 20	0.00	3	
	Library quality assessment	25	0.20	5.00	D (0.20	0.25	
	NGS sequencing (MiSeq)	1	990.00	990.00	90.00 39.60		1	
	Data analysis	NA	NA	NA	NA		1	
	Total			2050.00	0 82	2.00	8.25	

Mutation-based diagnostics in ADPKD is likely to be more widely employed

- Mutation identified in 90% cases
 - Definite (truncating) mutations in ~65% families
- Bioinformatic scoring of non-definite mutations increasingly reliable
 - Recurrent mutations ~50% in recent studies
 - Mutation database of value
 - Identify pathogenic mutations
 - Highlight hypomorphic changes
- Of diagnostic and prognostic value
- Mutation type may in the future influence treatment options
 - Similar to cystic fibrosis
- Cost of test needs to decrease
- Reliability and interpretation of results needs to improve