

### GROWTH, FEEDING, TREATMENT OF RENAL FANCONI SYNDROME. DOES EARLY TREATMENT WITH SUBSTRATE DEPLETION THERAPY PREVENT LATE COMPLICATIONS?

PD. Dr. Katharina Hohenfellner Kinderklinik Traunstein

### Interdisciplinary Cystinosis Clinic Traunstein

10/2010 - Interdisciplinary Cystinosis Clinic Cooperation with the German Patient Organization

children and adults

3 times /year – in addition to regular medical care 3 hours as outpatient

> Prof. Harms Nephrology (pediatrics, adult) Orthopedics Cardiology Pulmonology Ophthalmology Gastroenterology Endocrinology Neurology Internal Medicine Dermatology Dietician Logopedics Physiotherapist Social worker Prof. Marguardt



### Interdisciplinary Cystinosis Clinic Traunstein







# What is the optimal Cysteamine dose ?



# Treatment

Cumulative dose-response curve for orally administered cysteamine and peripheral leukocyte nonprotein cystine content at progressively increasing dose levels



At dosis over 80mg/kg/day: leukocyte nonprotein cystine level was in the range of asymptomatic heterozygotes



Thoene, et al, The Journal of Clinical Investigation 58 (7), 180-189,1976





#### Pharmacokinetics and pharmacodynamic study



Bouazza N. et al, Orphanet Journal of Rare Disease 2011,6:86



#### Initiation of treatment as early as possible to preserve renal function:



\*Initial therapy 10 mg/kg/day increasing weekly until (60)-90 mg/kg/day or 1300 g/m<sup>2</sup>





#### Diagnosis at 5 days (11.08.2005)

Treatment with Cystagon: 14.11.05 80 mg/kg/day 08.10.09 85 mg/kg/day 16.10.12 82 mg/kg/day 21.10.13 78 mg/kg/day

0,53 nmol cystine/mg protein 0,46 nmol cystine/mg protein

#### 06.10.2014:

Creatinine 0.35 mg/dl, Cystatin C 0.87 mg/ dl,

Cystatin-C-GFR 128 ml/min/1.7m2

#### Urine:

Albumin 19.6 mg/l < 20mg/dl Imunglobulin G 8.2 mg/l α1-Mikroglobulin 50.6 mg/l A2-Makroglobulin< 2.3 mg/l

- cystine levels < 1nmol half-cystine/mg protein
- maximum recommended Dose: 1.95 g/m²/day

At what age should treatment be started (siblings)?

Prenatal diagnostic- postpartal cystine levelspostpartal genetics ?

Which dose regime should be used ?

Maximal dose in adults ?

Timing of PML cells cystine measurement after intake of medication ?



#### Common problems in patients with nephropathic cystinosis



Elenberg E.et al, Pediatr Nephrol (1998) 12:365-370



#### 45 patients (3,5 y - 33 y)



mean time of PEG/Button: 6.6 years

10 patients with swallowing difficulties – 3 patients > 25 years with additional severe diarrhea







#### **Questions**

- Small volumes of electrolyte supplements more often /day
  Use of Amilorid ?
- Metabolic acidosis: exchange bicarbonate to citrate chemical compounds: Potassium- citrate or chloride instead of carbonate Magnesium organic compounds instead of anorganic compounds (Magnesiumoxid) Hydrochlorothiazide ?



- Indication for Indomethacin duration of treatment dosage ?
  <u>Indomethacin :</u> effective reducing levels of: urinary sodium, potassium, phosphate, uprate, glucose, bicarbonate secretion \*
   <u>but:</u> renal functional deterioration, ulcerogenic potential
- Early logopedic treatment for chewing and swallowing difficulties
- Muscle status : early physiotherapy
- Nutritional problems improve with age training programs for children/ adolescent similar to other patient groups with chronic illnesses as diabetes

\*Haycock GB et al, Arch Dis Child 1982 57:934-939



#### Cysteamine – Treatment

- slows progression of renal insufficiency
- protects extrarenal organs
- accelerates growth



93 patients treated with cysteamine55 historical controls

first year: 73.5%±3.4 of normal growth velocity untreated:59±3.7

every succeeding year 76.4 and 97.9 % of normal growth velocity

Percentage of normal Growth at different age intervals in Cysteamine-treated patients (solid bars) and Controls (hatched bars)

Gahl W et al, N Engl J Med 1987, Vol 316 (16);971-977



#### Improved renal function in children with cystinosis treated with cysteamine





#### Growth retardation in patients with cystinosis is multifactorial

- renal Fanconi Syndrome
- poor metabolic status
- decreased renal function
- extrarenal complications
- bone disease

metabolic acidosis loss of sodium / potassium calcium/phosphate imbalance

impaired axis GH-IGF-1 hypothyroidisms primary hypogonadisms (males) diabetes rickets cystine accumulation in bones

#### Cysteamine therapy does not lead to catch-up growth\*

\* Gahl W., Eur J Pediatr (2003) 162: S38-S41



### Fanconi-Syndrome

elevated urinary excretion

3 9/12 J, 88 cm



rickets

metabolic acidosis elevated excretion of Vitamin D binding protein\*\*

PTH

GH

IgF-1\*

#### adequate therapy:

625µgr/day ergocalciferol no elevation of

- 1,25 Dihydroxycholecalciferol serum level
- substitution with 1,25 Dihydroxycholecalciferol
- supplement of calcium/ phosphate cave:



HUDNEY DISKER

\*Norden AG etal, Kidney Int 2001;60:185-1892;\*\*Wilmer MJ, Am J Kidney Dis (2008);51:893-903 \*\*\*Steinherz R et al, J Pediatr 1983;102:592-594.

nephrocalcinosis

#### **Determination of Osteopenia**

Osteopenia:

11 transplanted children

Correlation of BMD with growth parameters Correlation of areal BMD

BMD measurement by DEXA:

deposition of crystals hypothyroidism diabetes mellitus primary hypogonadism urinary phosphate wasting chronic renal failure

5 male / 4 female 3/5 males primary testicular failure 7/9 patients – normal BMD

comparing to height, weight, pubertal stage growth

predictive value for bone fragility is poor in patients with nephropathic cystinosis cannot be used to assess fracture risk

\*Zimkas et al, Pediatr Nephrol (2003) 18 :384-390



#### **Endocrine Functions**

positive influence of cysteamine treatment\*

- on thyroid function without treatment: thyroid atrophy Hypothyroidism: adequately treated: 56% vs. 87%
- on Diabetes mellitus: adequately 4% vs.50%

no influence of cysteamine treatment:

- primary hypogonadisms (males) due to testis fibrosis and atrophy\*\*\* (low testosterone, LH<sup>1</sup>, FSH<sup>1</sup>,)
- delayed puberty

\*Gahl W et al, Ann Intern Med 2007 (147):242-250; \*\* Chick CL et al , Ann Intern Med 1993; 119; 568-575



#### Cysteamine-Treatment

Animal models: Effect of cysteamine on GH-IGF1 axis

<u>Rats</u>: GH • cysteamine is causing depletion of somatostatin • increase ghrelin plasma levels\*

<u>carpe fish :</u> increase of GH, thyroxin, T3 and growth\*\* <u>chicken:</u> enhanced growth and body weight\*\*\*

Humans: positive effect on GH cystine depleting effect in bone particular in epiphysis\*\*

\*Szabo et al, Endocrinology 1981;109:2255-2257, \*\*Fukuhara S etal, Am J Physiol Gastrointest Liver Physiol 2005;289: G138-G145,Yang CM et al ,\*\*\* Poult Sci 2006;85 :1912-1916



Growth

Growth hormone secretion in cystinosis patients:

 <u>4/9 nocturnal GH measurements:</u> normal mean GH level >3 ng/ml normal number of peaks during 7 h of measurement no difference to case control

<u>4/9 glucagon test</u>
 Glucagon-Test: 3/4 normal peak levels
 1/4 GH deficiency
 2/4 patients with abnormal peaktiming

before rhGH treatment exclusion of GH-deficiency with IGF-1



\*Besouw et al, Pediatrt Nephrol (2012) 27:2123-2127 KDIGO Cystinosis Conference | 'December 11-13, 2014 | Lisbon, Portugal

"Long-term treatment with growth hormone in short children with nephroathic cystinosis"

Safety of growth hormone treatment 74 /children (3-18 years) men period 3.1 years

52 patients conservative (mean age 7.1y)

7 Patients on dialysis (12.5 y) 15 renal transplant (14.8 y)

| 1. | SD -4.0±1.2 | 4.3±1.6 cm/y |
|----|-------------|--------------|
| 2. | SD -4.4±1.2 | 2.5±2.1 cm/y |
| 3. | SD -4.9±1.1 | 3.7±2.4 cm/y |

no faster deterioration in renal function no major side effects Insulin fasting levels elevated – no significant change in glucose levels

Wühl, E et al, J Pediatrics, 138, 6, 2001, 880-887







Growth

#### **Optimal growth**

- Management of rickets
- Vitamin D and 1,25 dihydrocholecalciferol treatment
- Supplement of phosphate and Calcium
- Parameters to start enteral feeding
- Hormonal treatment with rhGH
  - Exclusion of GH deficiency IGF1 measurements IgF1 low – glucagon test
- Hormonal treatment with thyroxin normal values healthy children ?
- Hormonal treatment of primary hypogonadisms in males
- Bone structure





