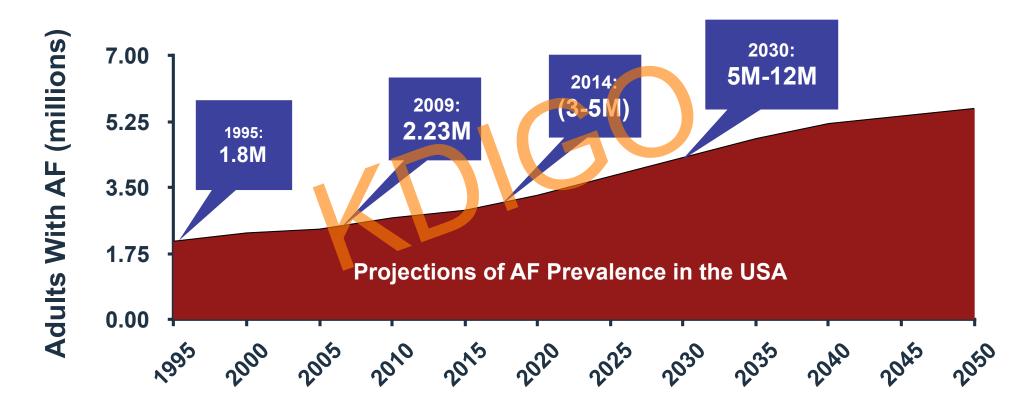
Stroke Prevention in AF with Kidney Disease: Challenges and Opportunities

MINTU TURAKHIA, MD MAS

Senior Director of Innovation and Research Center for Digital Health Stanford University

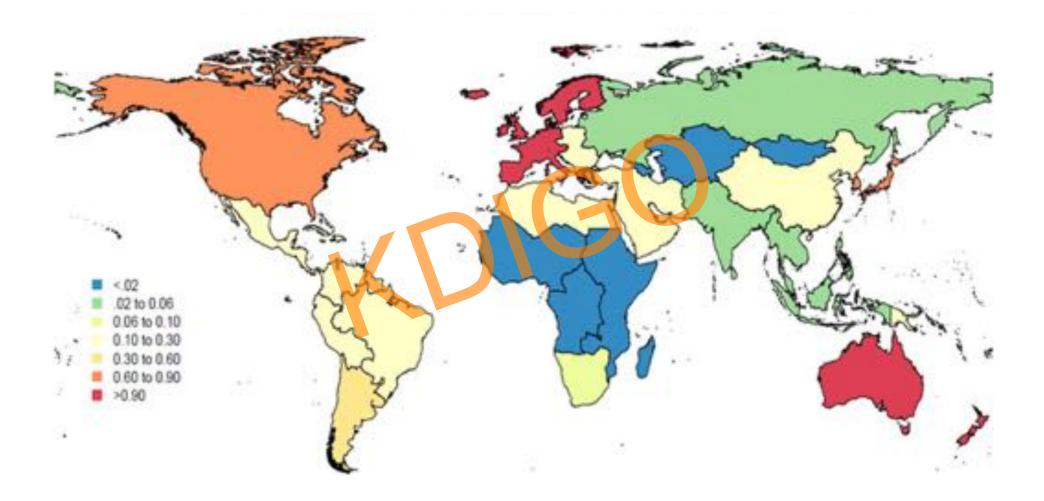

Disclosures

- Research support
 - •VA, NIH
 - Janssen, Medtronic, iRhythm, Boehringer
 Ingelheim, AstraZeneca
- Advisor/Consultant
 - St Jude Medical, Medtronic, Daiichi Sankyo, Zipline Medical, Precision Health Economics, Cyberheart, thryva, AliveCor, Armetheon, Abbott, Myokardia, Nokia
- Lecture honoraria
 - Medtronic, St Jude Medical

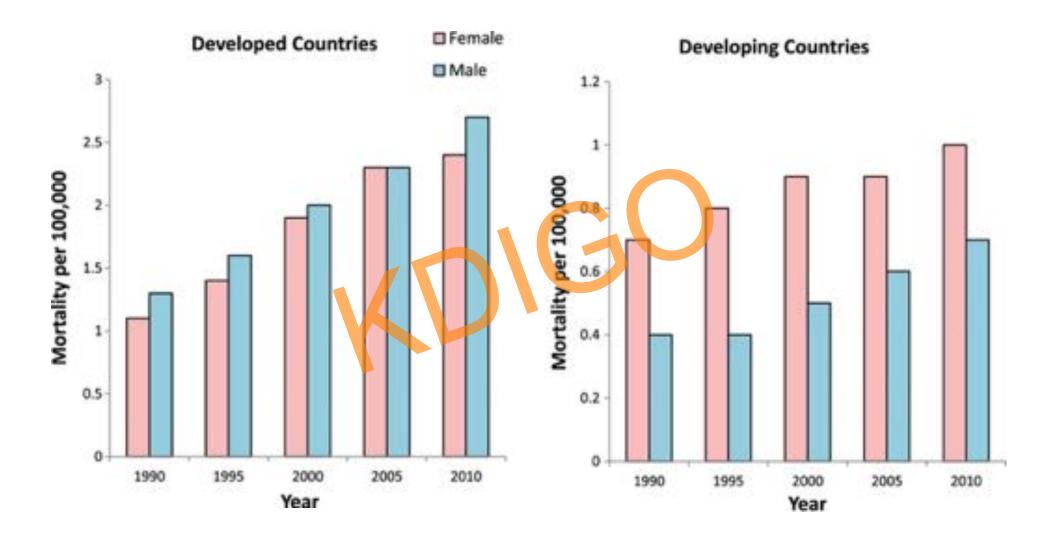
Prevalence of AF

- Most common sustained arrhythmia in clinical practice
- 4% of the population over age 60; 10% over age 80

Go AS. JAMA. 2001;285:2370. Miyasaka Y. Circulation 2006;114:119-125 Naccarelli GV. Am J Cardiol. 2009.

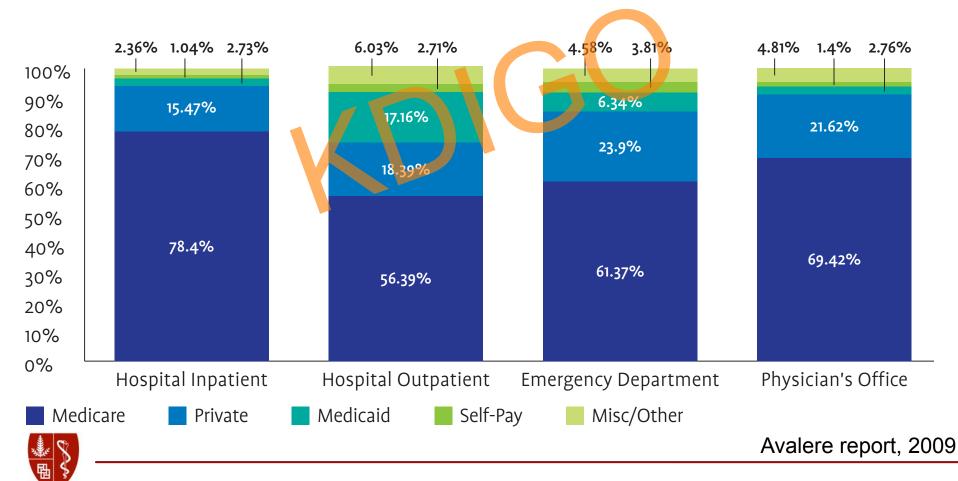

Prevalence of AF (per 100,000)

Chugh SS et al, Circulation, 2014


Deaths attributable to AF

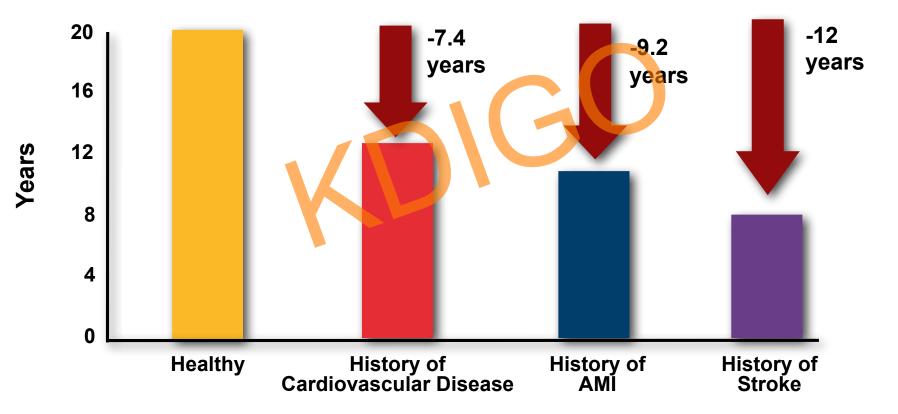
Chugh SS et al, Circulation, 2014

AF-associated mortality, stratified


Chugh S S et al. Circulation. 2014;129:837-847

AF is the most expensive cardiac dx

- Direct annual cost age < 65: \$6.65 billion</p>
- Medicare spending for new AF: \$15.7 billion
 - Mainly due to complications (stroke, CHF, MI, tachycardia)
- Direct and indirect cost of stroke: \$58 billion


FIGURE 3: MEDICARE IS THE PRIMARY PAYER FOR AFIB ACROSS ALL SETTINGS OF CARE

Stroke shortens lifespan the most

Framingham Heart Study

Average Remaining Life Expectancy at Age 60 (Men)

(Peeters A, et al. Eur Heart J. 2002)

AF and stroke: the classical model

Physiology

- Loss of coordinated atrial activity
- Impaired emptying, stasis, hypercoagulability, clot formation

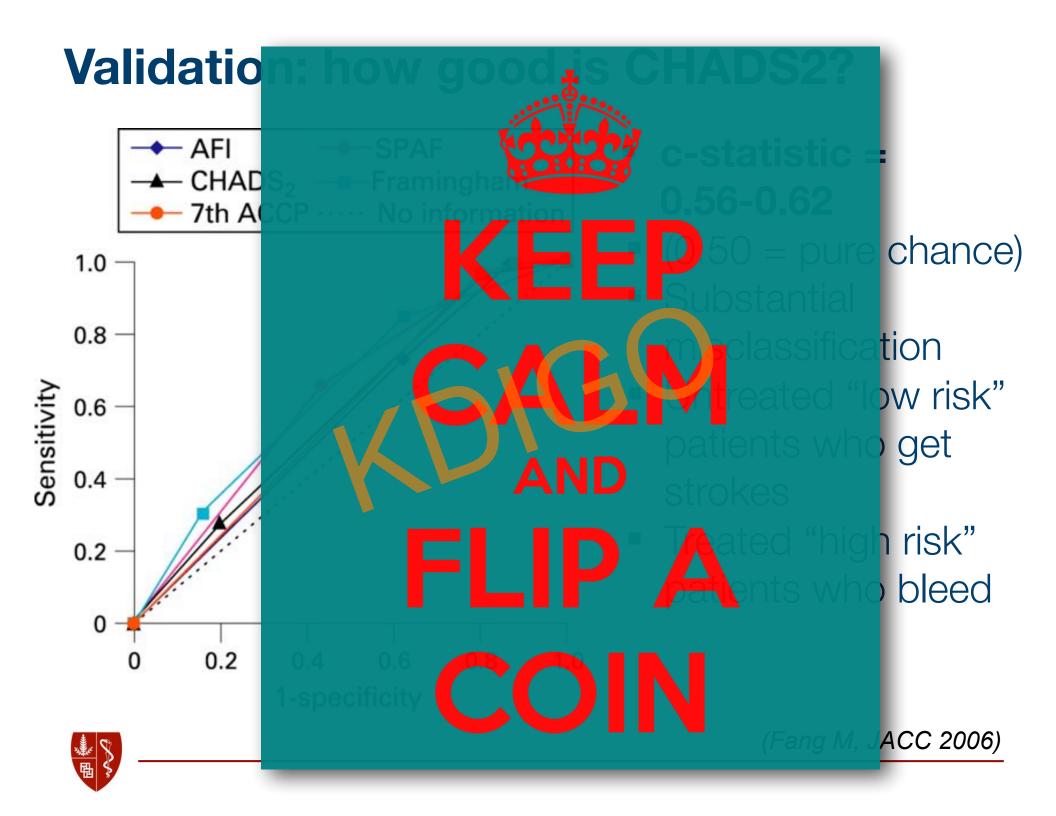
Implications for stroke risk

- 15% of 700,000 strokes/ year in U.S.
- Risk if untreated: 3-12%/yr
- Stroke from AF has higher severity, disability and mortality (larger territory)

Therapies can prevent stroke in AF

First, there was CHADS₂

- I point for each of the following:
 - Congestive heart failure
 - Hypertension
 - Age ≥ 75
- Diabetes
 2 points for prior Stroke/TIA



(Gage BF, JAMA 2001; AHA 2006 guidelines; ACCP 2012 guidelines)

National Registry of AF (NRAF)

- Source of CHADS₂ data
- Quality improvement Medicare registry
- 1733 inpatients, age 65-95, discharged from a hospital with AF
- 7 hospitals from stroke belt states
- ICD9 codes, not chart review
- Max follow-up: 2.7 years
- CKD not assessed
- Non-generalizable

Why did CHADS₂ survive this long?

- Specific, not sensitive
- Warfarin was too risky to be broadly used
 - High INR+uncontrolled BP+ASA = ICH
- As warfarin management improved (and ICH decreased), goal was to find a high sensitivity risk tool

Turakhia M, Circ Qual Care Outcomes, 2013

Then came CHA₂DS₂-VASc...

Risk factor	Score
Congestive heart failure/LV dysfunction	I
Hypertension	I
Age ≥75	2
Diabetes mellitus	I
Stroke/TIA/thrombo-embolism	2
Vascular disease ^a	I
Age 65–74	I
Sex category (i.e. female sex)	
Maximum score	9

Lip GY, et al. Chest. 2010

Weaknesses of CHA₂DS₂-VASc

- CHADS2 score gets reclassified upward
 - Age, CAD, female
- Few stroke events in derivation
- European Heart Survey
 - 1,577 of 5,333 untreated AF patients from cardiology practices in 35 countries
 - 2003-2004
 - 1-year follow up

CHA ₂ DS ₂ -VASc score	Patients (n=7329)	Adjusted stroke rate (%/year) ^b				
0		0%				
	422	1.3%				
2	1230	2.2%				
3	1730	3.2% 4.0%				
4	1718					
5	1159	6.7%				
6	679	9.8%				
7	294	9.6%				
8	82	6.7%				
9	14	15.2%				

Lip GY, et al. Chest. 2010

R₂CHADS₂: Yet another score

- Derivation: ROCKET-AF (rivaroxaban vs. warfarin)
- Validation: Kaiser
- Adding GFR<60 improves discrimination and reclassification
 c-statistic 0.74
- AHA/ACC/HRS 2014 guidelines did not endorse

(Piccini J, Circulation 2012)

Q: What is this patient's annual risk of stroke?

- Risk factors
 - ► Age 67
 - ► Female
 - Carotid disease
 - ► GFR < 60

Answer choices:

Very low (< .5%)
 Low (~1-2%)
 Medium (~3-6%)
 High (~8-18%)

- ► CHADS₂: 0 (low)
- CHA2DS2-VASC: 3 (med)
- ► R₂CHADS₂: 2 (med)

So why did new guidelines go with CHA₂DS₂-VASc?

- Calibrated for for <u>high sensitivity</u>
- Contemporary therapy has tilted in favor of having a low treatment threshold
 - Low bleeding risk with DOACs
 - Warfarin: less ICH, major bleeding now

The biggest limitation of the CHADS-based scores is the diagnosis of AF itself

- AF defined by treatment, not disease
 - Reimbursement codes, mostly hospitalized patients
- Transient or one AF not well represented
- Diagnosis creep
 - Device-detected AF
 - Ambulatory ECG
 - Episodic detection with wearables

How much AF should be treated?

- 30 seconds?
- 1 minute?
- 6 minutes?
- 6 hours?
- Depends on vascular risk?
- Is this a condemnation to lifelong therapy?

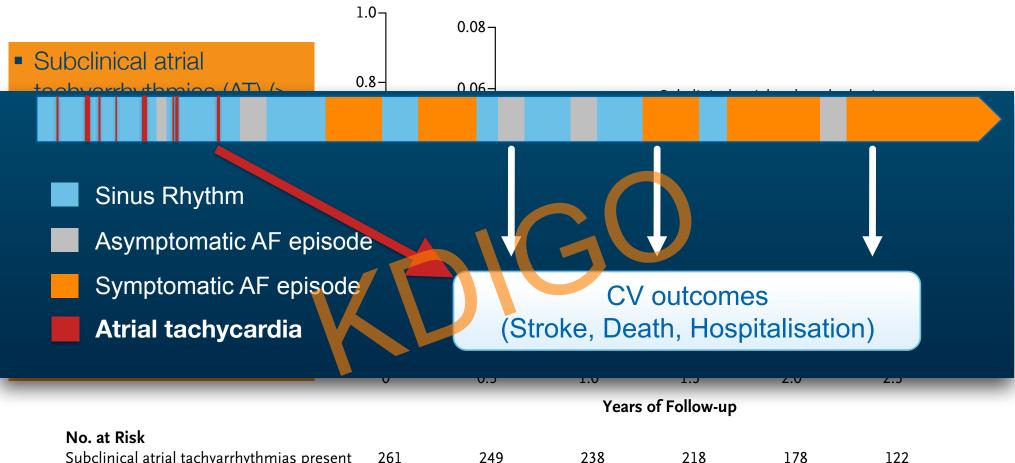
ASSERT Study

The NEW ENGLAND JOURNAL of MEDICINE

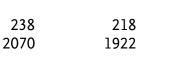
ORIGINAL ARTICLE

Subclinical Atrial Fibrillation and the Risk of Stroke

Jeff S. Healey, M.D., Stuart J. Connolly, M.D., Michael R. Gold, M.D., Carsten W. Israel, M.D., Isabelle C. Van Gelder, M.D., Alessandro Capucci, M.D., C.P. Lau, M.D., Eric Fain, M.D., Sean Yang, M.Sc., Christophe Bailleul, M.D., Carlos A. Morillo, M.D., Mark Carlson, M.D., Ellison Themeles, M.Sc., Elizabeth S. Kaufman, M.D., and Stefan H. Hohnloser, M.D., for the ASSERT Investigators*


METHODS

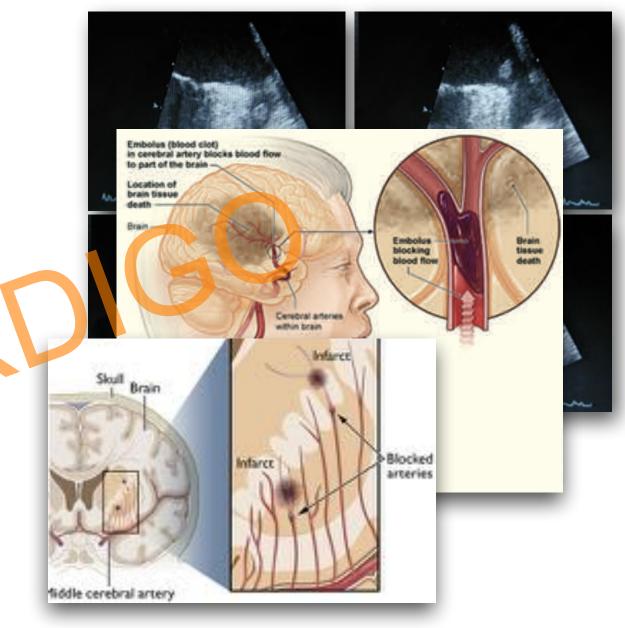
We enrolled 2580 patients, 65 years of age or older, with hypertension and no history of atrial fibrillation, in whom a pacemaker or defibrillator had recently been implanted. We monitored the patients for 3 months to detect subclinical atrial tachyar-rhythmias (episodes of atrial rate >190 beats per minute for more than 6 minutes) and followed them for a mean of 2.5 years for the primary outcome of ischemic stroke or systemic embolism. Patients with pacemakers were randomly assigned to receive or not to receive continuous atrial overdrive pacing.


Healey JS, et al, NEJM 2012.

B Risk of Ischemic Stroke or Systemic Embolism

2145

Subclinical atrial tachyarrhythmia	is present	261	
Subclinical atrial tachyarrhythmia	is absent	2319	


(Healey JS, NEJM 2012)

1197

1556

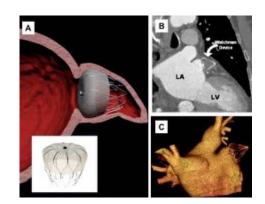
Mechanisms of stroke in AF are diverse

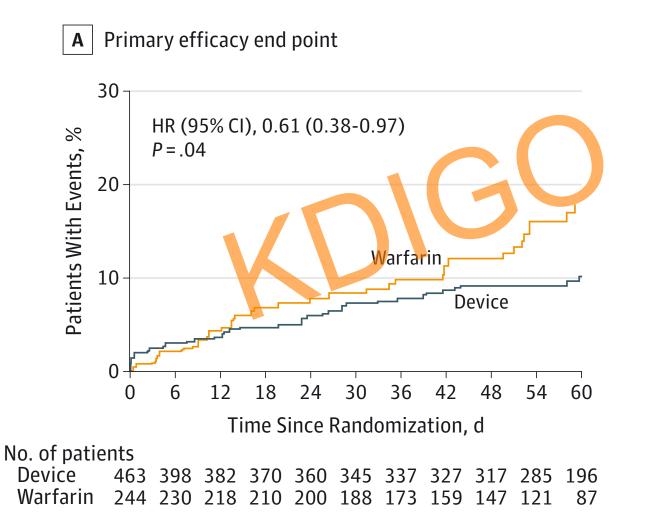
- Cardioembolic
- Atheroembolic
- Small vessel

Vascular risk factors also predict AF, stroke

- In patients with CHD/CHF but <u>without AF</u>, CHADS2 and other scores predict...
 - Left atrial dysfunction, LA appendage clot

AF correlates with brain disease

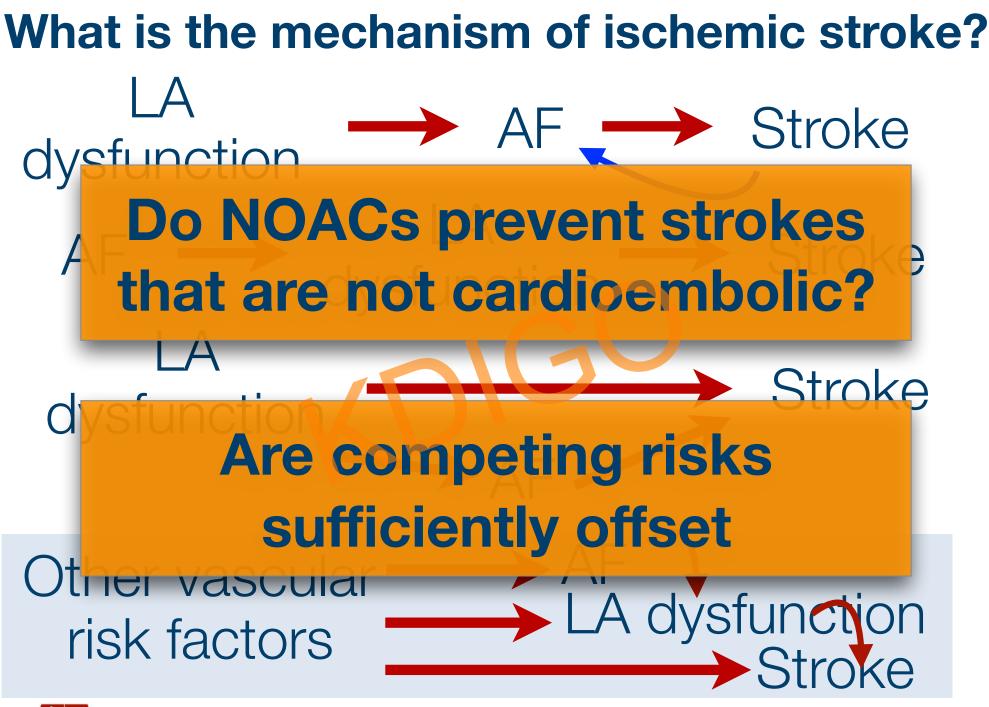

- Manhattan Cohort
 Study subset
 (CABL)
- n = 455 without stroke history; all received MRI
- LA volume and LA function also associated with brain ischemic lesions


Univariate correlates of subclinical cerebrovascular disease

	SBI		Log-WMHV		
	B (SE) P		B (SE)	P value	
Age	0.06 (0.01)	<0.01	4.7 (0.4)	<0.01	
Male sex	-0.2 (0.3)	0.46	0.9 (9.3)	0.92	
BMI	-0.02 (0.03)	0.47	-3.4 (1.0)	<0.01	
Hypertension	0.9 (0.4)	< 0.05	43.0 (10.4)	<0.01	
Diabetes	0.5 (0.3)	0.05	-3.3 (10.1)	0.75	
Hypercholesterolemia	-0.03 (0.27)	0.90	-9.9 (9.4)	0.29	
Atrial fibrillation	1.6 (0.4)	<0.01	64.6 (20.0)	<0.01	
CAD	0.7 (0.5)	0.15	38.7 (18.7)	<0.05	
Cigarette smoking	0.1 (0.3)	0.70	10.3 (9.1)	0.26	
LV mass	0.02 (0.004)	<0.01	0.8 (0.2)	<0.01	
Relative wall thickness	2.4 (1.4)	0.07	248.1 (48.9)	<0.01	
LV ejection fraction	-0.03 (0.01)	0.07	-0.9 (0.6)	0.12	
LV diastolic dysfunction	0.5 (0.3)	0.07	43.6 (8.9)	<0.01	
MV regurgitation (> mild)	0.9 (0.4)	< 0.05	11.3 (16.2)	0.48	
Heart rate	0.01 (0.01)	0.22	0.2 (0.4)	0.56	

Watchman 4-year data Strokes still occur

 579 of 707 (82%) of randomized pts


Reddy V, JAMA 2014

AF temporally discordant

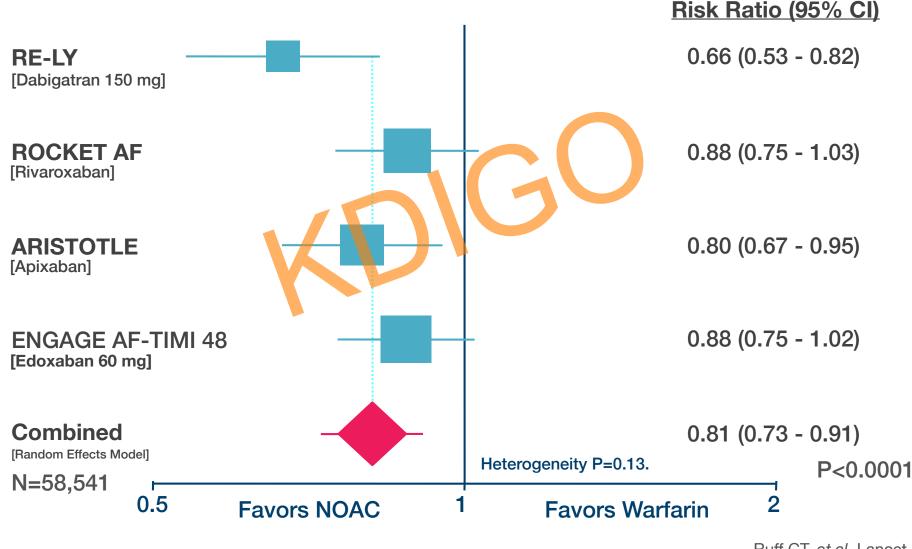
- ASSERT
 - 1 of 51 stroke patients had AF at time of stroke
 - 25 (49%) had no AT/AF (including post-stroke)
 - Median time to AF was 339 days prior
- In larger device cohorts, AF does transiently increase risk but attributable risk is low
- AF also discordant with ICH on OAC

Brambatti M, *et al. Circulation,* 2014 Turakhia M, *et al. Circ EP*, 2015

Trials in progress

 Table 2
 Summary of ongoing trials investigating the safety/efficacy of OAC treatment of occult AF

	Population	Intervention	Primary outcomes
ARTESiA	CHA2DS2-VASc \geq 4 with at least a single AHRE \geq 175 bpm lasting \geq 6 min detected by ILR or intracardiac device No history or ECG evidence of clinical AF	Randomised to either aspirin 81 mg daily (control) or apixaban 5 mg twice daily (intervention)	Incidence of stroke and major bleeding events
STROKESTOP	All persons aged 75 years and 76 years in two Swedish provinces <i>No history of AF</i>	Twice-daily ECG screening+OAC treatment if AF detected (single episode duration >30 s, or 2 or more episodes >10 s)	Incidence of stroke and major bleeding events


Keach W, Turakhia M, et al. Heart, 2015

Target specific oral anticoagulants vs. warfarin

Outcome of stroke or systemic embolism

Stanford MEDICINE Center for Digital Health Ruff CT, et al. Lancet. 2014

	RE-LY (Dabigatran)	ROCKET-AF (Rivaroxaban)	ARISTOTLE (Apixaban)	ENGAGE AF TIMI 48 (Edoxaban)			
% Renal Excretion	80%	35%	27%	50%			
Efficacy % Warfarin vs. OAC (CVA or SE)	1.69 vs. 1.11 _{p<.001} NNT = 167 *150 mg shown	2.42 vs. 2.12 p=.12 (2.2 vs 1.7 on treatment)	1.60 vs. 1.27 _{p < .001} NNT = 303	1.80 vs. 1.57 p=.08 (1.5 vs. 1.18 on treatment) *High-dose (60 mg)			
Major Bleeding % 3.57 vs. 3.32		3.45 vs. 3.6	3.09 vs. 2.13 ⊳<.001	3.43 vs. 2.75			
ICH%	0.74 vs. 0.30	0.74 vs. 0.49	0.47 vs. 0.24	0.85 vs. 0.39			
All-cause mortality %/yr	4.13 vs. 3.64 _{p = 0.051} NNT = 204	4.91 vs. 4.52	3.94 vs 3.52 _{p = 0.05} NNT = 238	4.35 vs. 3.99 _{p=0.08} NNT = 277			
Conclusion vs. warfarinSuperior efficacy, similar bleeding, less ICH		Non-inferior on efficacy and safety measures	Superior efficacy, less major bleeding and ICH, lower mortality	Non-inferior on efficacy; less bleeding Connolly SJ et al. <i>N Engl J Med</i> .			
	1	1	1	Patel MR et al. N Engl J Med Granger CB et al. N Engl J Med Giugliano RP et al. N Engl J Med.			

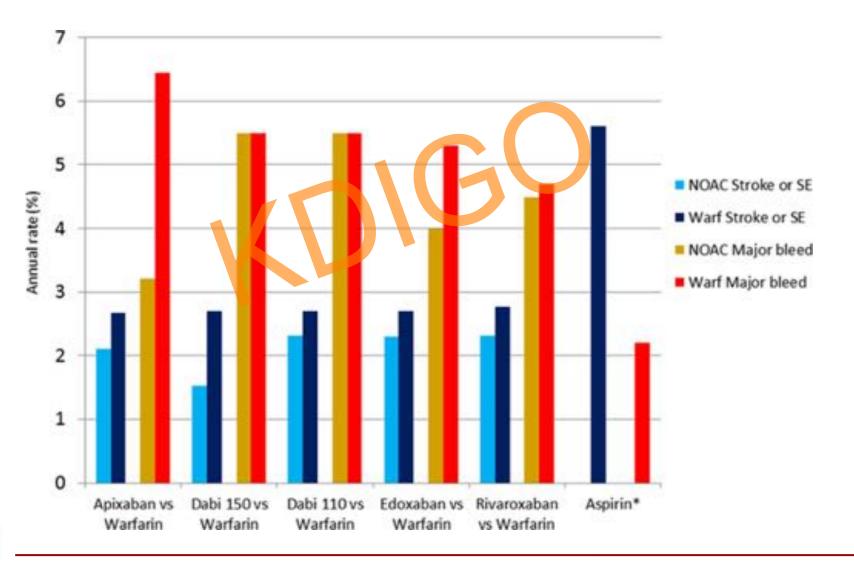
Dosing in chronic kidney disease

Agent	Standard AF Dose (Prescribing info)	Renal Dosing	Trial and Other Experience			
Dabigatran	150mg Twice Daily (CrCl > 30ml/min)	75mg Twice Daily (CrCL15-30mi/min) Bottom L	 RE-LY trial: 150mg or 110mg BID if CrCl > 30ml/min No trial experience in pts w/ CrCl < 30ml/min 75mg dose not studied in RCTs European dosage: Furopean dosage: S50ml/min 30-50ml/min CrCl < 30ml/min 			
Rivaroxaban	Zoning Once Daily	one have been a in randomized t				
Apixaban		CrCl < 25-30 or RD trials in dev	proceribing information			
Edoxaban	60mg Once Daily (CrCl 50-95ml/min) BLACK BOX WARNING: Avoid use if CrCl > 95ml/min	30mg Once Daily (CrCl 15-50ml/min)	 TIMI-ENGAGE: Randomized to 60mg or 30mg Daily Dose halved if CrCl 30-50ml/min, Weight ≤ 60kg, or Concomitant verapamil, quinidine, or dronedarone (strong P-gp inhibitors) No trial experience in pts w/ CrCl < 30ml/min Worse outcomes in patients with CrCl > 95ml/min 			

Issues

- Treatment benefit in CKD subgroups?
- Treatment harm?
- Stability of kidney function?
 - How often should CrCl be assessed?
 - Titration of ACE/ARB?
- Cockroft-Gault vs MDRD or CKD-EPI

Pivotal NOAC trials and CKD


Table 1 Selected patient characteristics of the included trials

Characteristics	Trial											
	RE-LY $(n = 18, 113)$			ARISTOTLE $(n = 18,201)$		ROCKET AF $(n = 14,262)$		J-ROCKET AF $(n = 1,278)$		ENGAGE AF-TIMI 48 ($n = 21,105$)		
	Dab 110 mg	Dab 150 mg	Warfarin	Apix	Warfarin	Riva	Warfarin	Riva	Warfarin	Edox 30 mg	Edox 60 mg	Warfarin
Creatinine clearance ^c %												
30-49 mL/min	19.4	19.2	19.4	16.5	16.6	21.0	20.6	22.1	22.4	19.3	19.6	19.0
50-79 mL/min	48.6	48.1	48.5	41.6	41.8	46.6	48.8	51.3	51.3	NR	NR	NR
>80 mL/min	32.3	32.0	32.2	41.2	41.4	32.3	31.3	26.6	26.3	NR	NR	NR
				erate rena		Mild r			Non renal			
			impa	irment (9	95 % CI)	impair	ment (95 %	CI)	impairment	t (95 % CI)		
	Safety											
	•	ran 110 [<mark>39</mark>]	0.99 ^b	(0.77-1.2	8)	0.76 (0	.62–0.94)		0.61 ^c (0.44–	0.84)		
	Dabigat	ran 150 [39]	1.01 ^b	(0.79–1.3	0)	0.91 (0	.75–1.11)		0.84 ^c (0.62–	1.13)		
	Rivarox	aban [40]	0.98 ^b	(0.84-1.1	4)	NR			1.04 ^d (0.96–	1.13)		
	J-ROCK	ET [41]	1.22 ^b	(0.78–1.9	1)	NR			1.07 ^d (0.80–	1.43)		
	Apixaba	ın [30]	0.50 ^a	(0.38-0.6	6)	0.77 (0	.65–0.94)		0.80 ^d (0.61–	1.04)		
	Edoxaba	an 30 [<mark>9</mark>]	0.31 ^b	(0.23-0.4	2) ^e	NR			0.55 ^d (0.46–	$(0.65)^{\rm e}$		
	Edoxaba	an 60 [<mark>9</mark>]	0.63 ^b	(0.50-0.8	$1)^{e}$	NR			0.88 ^d (0.76–	$(1.03)^{e}$		
	Efficacy	7										
	Dabigat	ran 110 [<mark>39</mark>]	0.85 ^b	(0.59–1.2	4)	0.93 (0	.70–1.23)		0.84 ^d (0.54–1.32)			
	Dabigat	ran 150 [<mark>39</mark>]	0.56 ^b	0.56 ^b (0.37–0.85) 0.84 ^b (0.57–1.23) 0.82 ^b (0.25–2.69)				0.67 ^d (0.42–	1.09)			
	Rivarox	aban [40]	0.84 ^b					0.78 ^d (0.63–	0.98)			
	J-ROCK	ET [41]	0.82 ^b			NR		0.36 ^d (0.14–0.		0.93)		
	Apixaba	ın [30]	[30] 0.79 ^a (0		4)	0.74 (0	.56–0.97)		0.88 ^c (0.64–	1.22)		
	Edoxaban 30 [9] 1.17 ^b (0.92–		(0.92-1.4	5) ^e	NR			1.10 ^d (0.92–	1.32) ^e			
	Edoxaba	an 60 [<mark>9</mark>]	0.86 ^b	(0.68–1.15) ^e NR				$0.87^{\rm d}$ (0.82–1.05) ^e				

Subgroup analyses of NOAC trials

• For CrCl \leq 50 mL/min

On-Treatment Outcomes in Patients With Worsening Renal Function With Rivaroxaban Compared With Warfarin

Insights From ROCKET AF

Table 2. Baseline Characteristics by Renal Function Over the Follow-Up

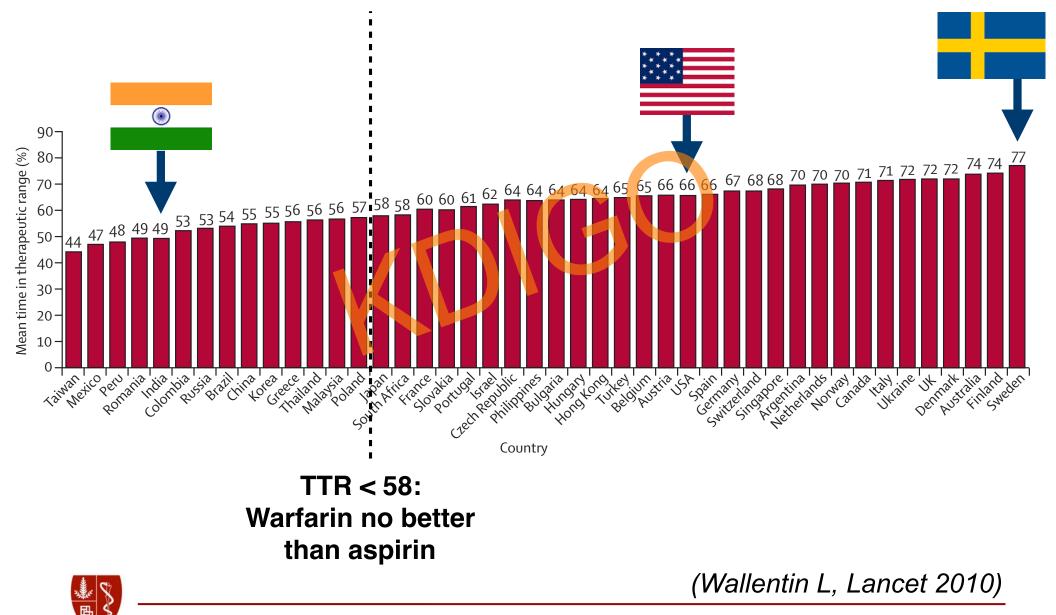
Variable	All Patients (n=12612)	SRF Patients (n=9292)	WRF Patients (n=3320)	<i>P</i> Value
Randomized to rivaroxaban, % (n)	50 (6253)	49 (4565)	51 (1688)	0.090
Age, y	73 (65, 78)	72 (65, 78)	73 (66, 78)	<0.0001
Female, % (n)	39 (4959)	38 (3555)	42 (1404)	<0.0001

Fordyce CB, Circulation. 2016

Table 3. Outcomes by Renal Function Over the Course of the Study On-Treatment Period

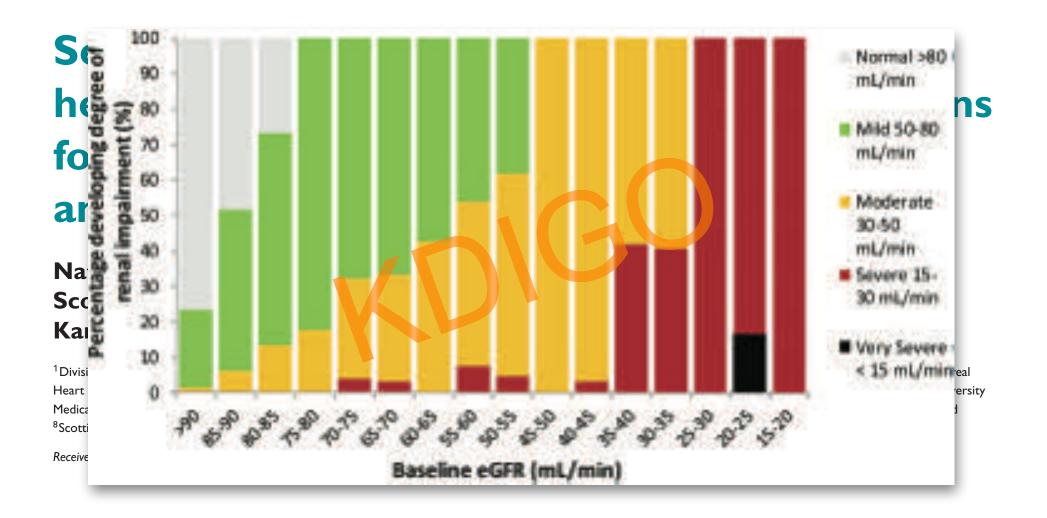
Outcomes	SRF Patients, Event Rate per 100 patient-years (95% CI) (Total Events, n)	WRF Patients, Event Rate per 100 patient-years (95% CI) (Total Events, n)	HR (95% CI), WRF Versus SRF Patients	<i>P</i> Value
Efficacy outcomes				
Stroke or systemic embolism	1.82 (1.60–2.04) (262)	2.37 (1.68–3.07) (45)	1.25 (0.89–1.75)	0.19
Vascular death	1.41 (1.21–1.60) (203)	2.21 (1.54–2.88) (42)	1.47 (1.05–2.06)	0.026
MI	0.93 (0.77–1.09) (134)	1.22 (0.72–1.72) (23)	1.19 (0.75–1.90)	0.47
Stroke/embolism/vascular death/MI	3.87 (3.55–4.19) (557)	5.66 (4.59–6.74) (107)	1.40 (1.13–1.73)	0.0023
All-cause mortality	1.93 (1.70–2.15) (279)	3.10 (2.31–3.89) (59)	1.49 (1.12–1.98)	0.0067
Ischemic stroke	1.24 (1.06–1.42) (179)	1. <mark>63</mark> (1.06–2. <mark>2</mark> 1) (31)	1.25 (0.83–1.87)	0.29
Safety outcomes				
Major or NMCR bleeding	11.44 (10.87–12.01) (1529)	11.97 (10.34–13.61) (206)	1.05 (0.90–1.21)	0.55
Major bleeding	3.16 (2.87–3.45) (451)	3.69 (2.82–4.56) (69)	1.08 (0.83–1.40)	0.59
Fatal bleeding	0.28 (0.19–0.36) (40)	0.26 (0.03–0.49) (5)	0.98 (0.37–2.56)	0.96
Critical organ bleeding	0.98 (0.82–1.14) (141)	0.74 (0.35–1.12) (14)	0.68 (0.38–1.21)	0.19
Transfusion ≥2 U	0.73 (0.59–0.87) (105)	1.11 (0.63–1.58) (21)	1.34 (0.81–2.22)	0.25
Hemoglobin decrease ≥2 g/dL	2.21 (1.96–2.45) (316)	2.72 (1.97–3.46) (51)	1.08 (0.78–1.48)	0.64
ICH	0.63 (0.50–0.76) (91)	0.68 (0.31–1.05) (13)	1.00 (0.54–1.83)	0.99
NMCR bleeding	8.56 (8.07–9.06) (1159)	8.53 (7.16–9.90) (149)	1.02 (0.86–1.21)	0.82

CI indicates confidence interval; HR, hazard ratio; ICH, intracranial hemorrhage; MI, myocardial infarction; NMCR, nonmajor clinically relevant; SRF, stable renal function; and WRF, worsening renal function.


INR control (VA TREAT-AF cohort)

Yang F / Turakhia M, in press

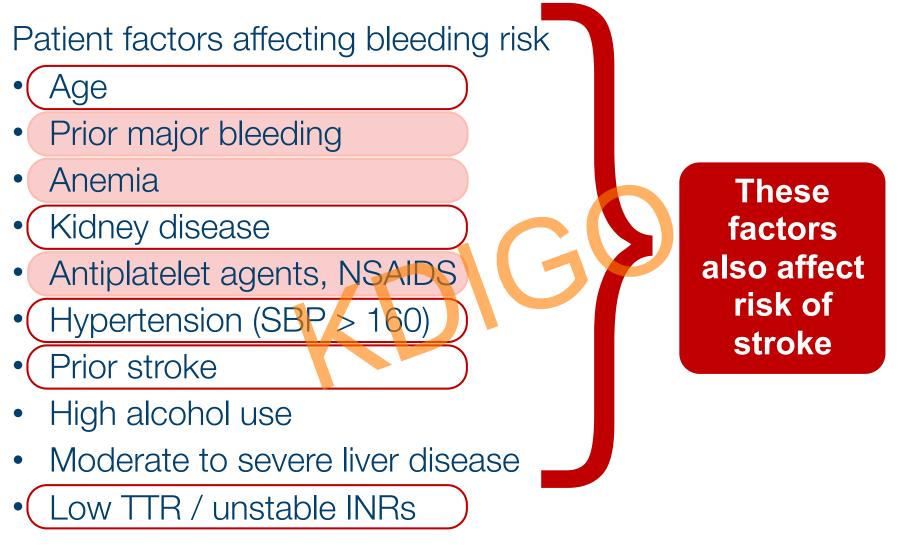
INR control by country RE-LY trail (warfarin vs. dabigatran)


Misery loves company: AF, CKD, and HF

Decreased cardiac output Ventricular dysfunction Rapid/ irregular Tachycardiaventricular rate mediated Loss of atrial cardiomyopathy systole Shared **Risk Factors:** Age, coronary disease, diabetes, hypertension HEART FAILURE ATRIAL FIBRILLATION chronic kidney disease, obesity, sleep apried and Cellular Increased tobacco use calcium dysregulation focal triggers, Renin-angiotensinpulmonary vein ectopy, substrate remodeling, aldosterone rotor formation system activation Conduction and reentry Increased filling slowing pressures Fibrosis *Action potential duration Left atrial heterogeneity stretch **Decreased effective refractory period

Trulock KM, JACC 2014

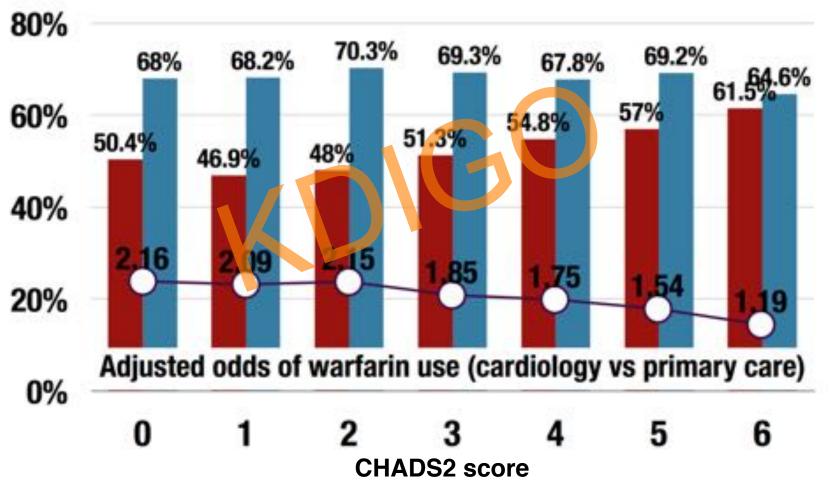
CHARM trial: (candesartan in HF)


Hawkins NM, Eur J Heart Fail, 2016

What about bleeding risk?

Center for Digital Health

MEDICINE Department of Medicine



Gage BF, et al. Am Heart J. 2006 Fang MC, et al. J Am Coll Cardiol. 2011 Pisters R, et al. Chest. 2010 Piccini JP, et al. Circulation. 2013

Quality and Coordination of Care

Anticoagulation prescription in new AF: Primary care vs. cardiology in VA system n = 140,000

Nephrology and Cardiology care not coordinated

- In outpatient setting, most patients take on role of care coordinator
- In U.S., bundled payments are disease focused
- Problem of care structure
 - "I defer to the other"

We are learning, but need to learn more from you

EHRA POSITION PAPER

Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making-a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society

Giuseppe Boriani (Chair, Italy)*, Irina Savelieva (Co-chair, UK), Gheorghe-Andrei Dan (Romania), Jean Claude Deharo (France), Charles Ferro (UK), Carsten W. Israel (Germany), Deirdre A. Lane (UK), Gaetano La Manna (Italy), Joseph Morton (Australia), Angel Moya Mitjans (Spain), Marc A. Vos (The Netherlands), Mintu P. Turakhia (USA), and Gregory Y.H. Lip (UK)

Document reviewers: Bulent Gorenek (Review Coordinator, Turkey), Yoshihide Takahashi (Japan), Dennis Lau (Australia), Mina Chung (USA), Jens Cosedis Nielsen (Denmark), Laurent Fauchier (France), Tatjana Potpara (Serbia), Francisco Marin (Spain), Gulmira Kudaiberdieva (Turkey), Gerhard Hindricks (Germany), Cecilia Linde (Sweden), and Michele Brignole (Italy)

Boriani G, et al. Europace 2015

VIEWPOINT

Renal Function in Patients With Atrial Fibrillation Receiving Anticoagulants The Canaries in the Coal Mine

Gautam R. Shroff, MBBS

Division of Cardiology, Department of Internal Medicine, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis. The past few years have witnessed unprecedented progress in the field of anticoagulation for atrial fibrillation (AF). Since 2010, 4 direct oral anticoagulants (DOACs) have been approved in nonvalvular AF based on pivotal trials. Patients with advanced chronic kidney disease (CKD) are arguably the highest-risk patients receiving anticoagulation from the standpoint of both stroke/systemic embolism and bleeding events. Although patients with estimated creatinine clearance (eCrCl) less than 30 mL/min/1.73m² (to convert to milliliters per second per meters squared, multiply by 0.0167) were excluded from trials, about 15% to 20% of enrollees had stage 3 CKD, providing clinicians representative data to derive meaningful conclusions to guide practice. Prespecified subgroup analysis and metaanalysis concur that the overall trial results (ie, noninferiority of the DOACs vs warfarin in the prevention of stroke/systemic embolism) are applicable to patients with stage 3 CKD, and several agents may actually have specific advantages.¹

Not enough attention has been focused on systemic approaches to recognize and anticipate the fresh

cluded that errors by prescribers related to incorrect dosing/indication were major contributors in the context of clinical characteristics that affect accurate dosing (ie, higher age, impaired renal function).

In these examples, the lack of recognition of the significance of underlying renal impairment was a unifying denominator. The CKD population is most vulnerable to needing dose adjustments because of the high renal clearance of the DOACs, ranging from 25% (apixaban) to 80% (dabigatran). A post hoc observation of the Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) trial highlighted the temporal deterioration in eCrCl among all 3 study arms receiving longterm anticoagulation (high- and low-dose dabigatran and warfarin), albeit statistically significant in the warfarin arm.⁵ This observation may lend credence to the notion of warfarin-related nephropathy/glomerulopathy, but more importantly perhaps, indicates the need for temporal monitoring of renal function during anticoagulant therapy for AF, particularly in patients with CKD. Although most clinicians use estimated glomerular filtration rates to monitor renal function in practice, the doses

Shroff G, JAMA Cardiology, 2016

Summary

- Challenges
 - We have enough data to be worried, but not enough to know what to do
 - Trials of every permutation are unlikely
 - Reliance on observational data
 - More precision risk stratification?
- Opportunities
 - Defining areas of controversy, gaps in evidence, and a roadmap for research
 - Starting down a longer path of joint recommendations for clinical care and process measures
 - New friends, new collaborations!

