THE GEORGE INSTITUTE FOR GLOBAL HEALTH

Antiocoagulation in diabetes and CKD Vlado Perkovic

Executive Director, George Institute Australia Professor of Medicine, University of Sydney

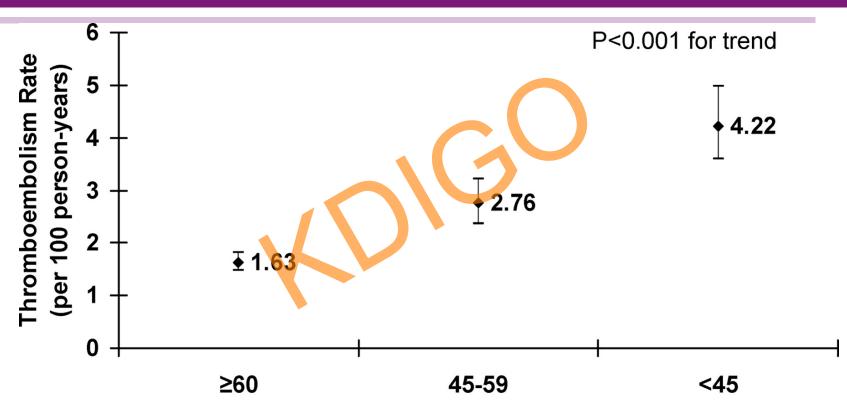
Why worry about anticoagulants?

- Greater risk of thrombosis and relevant risk factors
- Greater risk of bleeding
- Variable metabolism

= Uncertain risk benefit ratio

Why anticoagulate?

- Atrial fibrillation
- Venous thromboembolism
- Atherothrombosis
- Vascular instrumentation
- Other.....


Studies Reporting Prevalence or Incidence of Atrial Fibrillation in Chronic Kidney Disease

Study	Study type	Sample Size	Kidney dysfunction	Prevalence/Incidence of AF
REGARDS	Cross-sectional	26,917	eGFR > 60 + albuminuria	2.8%
			e GFR 30-59	2.7%
			eGFR < 30	4.2%
KAMS	Cross-sectional	41,417	eGFR > 75.5	0.9%
			eGFR 62.6 - 75.5	1.2%
			eGFR < 62.6	2.8%
CRIC	Cross-sectional	3,267	eGFR < 60	18%
Niigata	Prospective	235,818	eGFR 30-59	5.1
			eGFR < 30	6.6
ARIC	Prospective	10,328	eGFR 30-59	9
			eGFR 15-29	36
			albumin/creatinine ratio 30-299	15
			albumin/creatinine ratio ≥ 300	26
DOPPS	Cross-sectional	17,513	Hemodialysis	12.5%
Vazquez et al	Cross-sectional	190	Hemodialysis	13.6%
USRDS	Cross-sectional	223,477	Hemodialysis	10.7%
Genovesi et al	Cross-sectional	488	Hemodialysis	27%
USRDS	Cross-sectional	25,825	Peritoneal Dialysis	7%

AFIB/CKD/ATRIA Study

Crude rates of thromboembolism OFF warfarin therapy by category of eGFR among adults with nonvalvular AF.

AFIB/CKD/ATRIA Study (2)

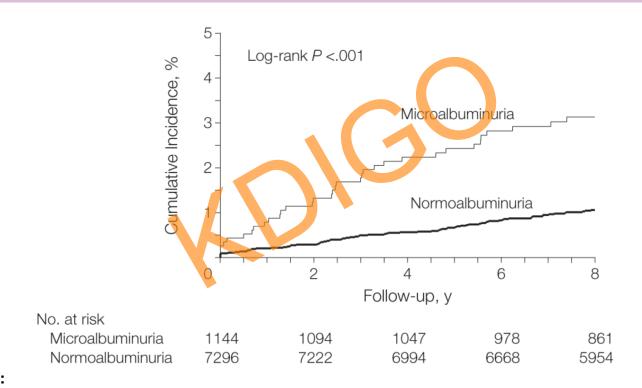
Rates of thromboembolism OFF anticoagulation by the presence or absence of documented proteinuria at different levels of eGFR in adults with nonvalvular AF

	Unadjusted Rate (per 100 Person-Years) of Thromboembolism (95% Cl)		
eGFR, mL \cdot min ⁻¹ \cdot 1.73 m ⁻²	Proteinuria	No Proteinuria	
≥60	3.06 (2.47-3.79)	1.41 (1.25–1.60)	
45–59	3.93 (2.96-5.23)	2.46 (2.05-2.95)	
<45	4.69 (3.60–6.12)	3.97 (3.22–4.88)	

AFIB/CKD/ATRIA Study

Multivariable Association Between Level of eGFR, Proteinuria, and Risk of Thromboembolism Off Anticoagulation in Adults With Nonvalvular AF

	Adjusted* Hazard Ratio for Thromboembolism (95% CI)
eGFR, mL ⋅ min ⁻¹ ⋅ 1.73 m ⁻²	
≥60	Referent
45–59	1.16 (0.95–1.40)
<45	1.39 (1.13–1.71)
Proteinuria	
No	Referent
Yes	1.54 (1.29–1.85)


^{*}Model also included age, sex, race/ethnicity, educational attainment, annual income status, prior ischemic stroke, heart failure, diabetes mellitus, hypertension, and coronary heart disease.

From: Microalbuminuria and Risk of Venous Thromboembolism

JAMA. 2009;301(17):1790-1797. doi:10.1001/jama.2009.565

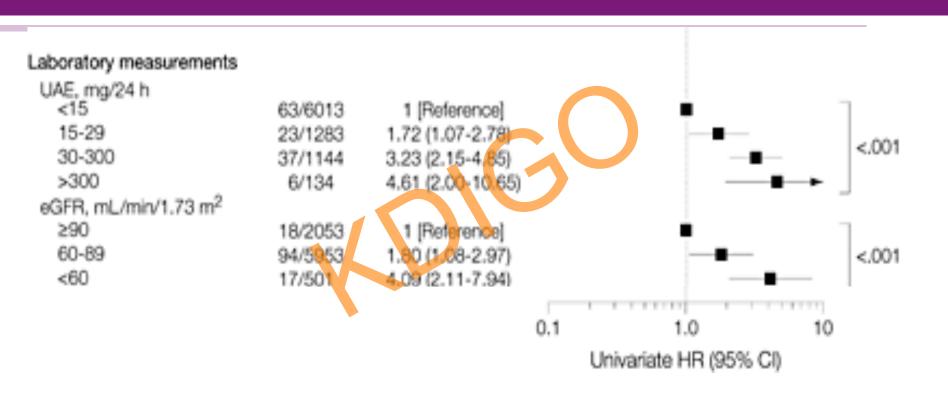
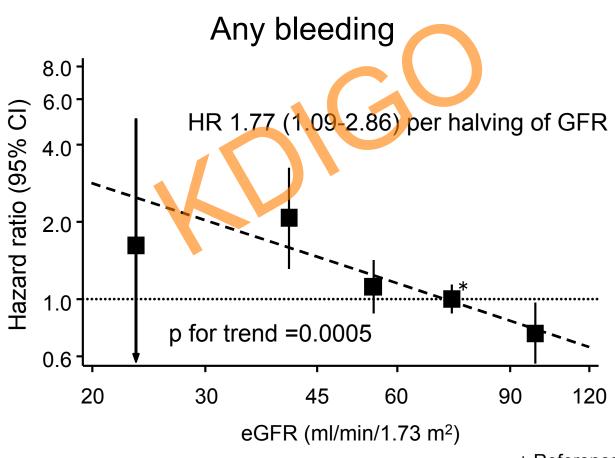
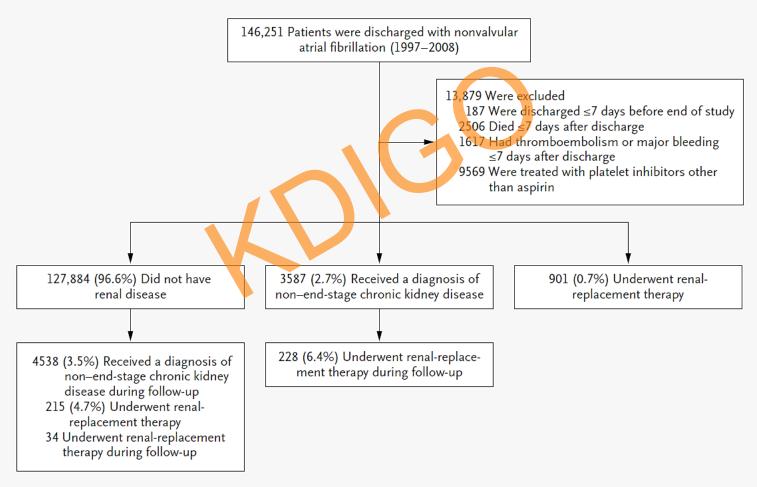


Figure Legend:

Microalbuminuria denotes urinary albumin excretion of 30 to 300 mg/24 h; normoalbuminuria, urinary albumin excretion of less than 30 mg/24 h.


Association of CKD with Venous Thromboembolism



HOT- bleeding by Kidney function

Stroke and Bleeding in AFIB/CKD (Danish Cohort Study)

Event Rates (Danish Cohort Study)

Event Rates, According to Status with Respect to Renal Disease.*

Event	No. of Person-yr	No. of Events	Event Rate per 100 Person-yr (95% CI)
Stroke or thromboembolism			
No renal disease	461,734	16,648	3.61 (3.5 <mark>5</mark> –3.66)
Non-end-stage CKD	13,078	842	6.44 (6.02–6.89)
Disease requiring renal- replacement therapy	2,922	164	5.61 (4.82–6.54)
Bleeding			
No renal dis <mark>ea</mark> se	457,605	16,195	3.54 (3.48–3.59)
Non-end-stage CKD	12,515	1,097	8.77 (8.26–9.30)
Disease requiring renal- replacement therapy	2,734	243	8.89 (7.84–10.08)
Myocardial infarction			
No renal disease	480,745	9,037	1.88 (1.84–1.92)
Non-end-stage CKD	13,500	784	5.81 (5.41–6.23)
Disease requiring renal- replacement therapy	2,925	175	5.98 (5.16–6.94)
Death			
No renal disease	493,305	55,297	11.21 (11.12–11.30)
Non-end-stage CKD	14,052	5,431	38.65 (37.63–39.69)
Disease requiring renal- replacement therapy	3,114	914	29.35 (27.51–31.32)

^{*}A patient's renal status could change during follow-up. CI denotes confidence interval, and CKD chronic kidney disease.

Olesen JB et al. N Engl J Med 2012;367:625-35.

Bleeding with warfarin in AF

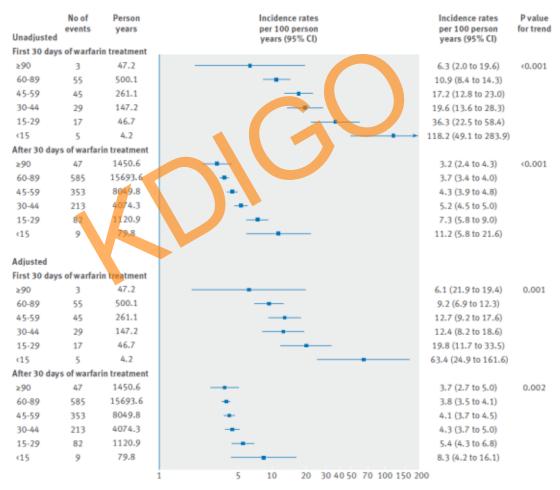
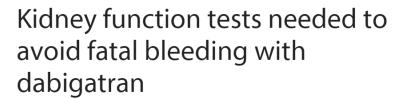



Fig 1 | Unadjusted and adjusted (see footnote to table 2 for adjustment factors) rates per 100 person years of major bleeding by estimated glomerular filtration rate (eGFR) categories

The Pharmaceutical Journal | . 21 NOV 2011

By News team

All patients should have their kidney function tested before beginning treatment with the anticoagulant dabigatran (Pradaxa; Boehringer Ingelheim), in order to reduce the risk of fatal bleeding, the European Medicines Agency has emphasised.

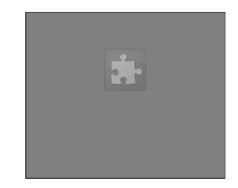
During treatment with the drug, the kidney function of patients over 75 years of age and of any patient with a suspected decline in renal function should be checked annually, it adds.

The EMA's statement confirms advice issued by its Committee for Medicinal Products for Human Use last month (October 2011), after reports emerged of cases of fatal bleeding among patients in Japan treated with dabigatran which is excreted mainly via the kidneys.

According to recent figures from the EudraVigilance database (6 November 2011), a total of 256 cases of dabigatran-related fatal spontaneous bleeding have been reported worldwide. Of these, 21 involved patients from the EU.

The EMA says these numbers reflect the increased use of the drug — initially licensed only for the prevention of venous thromboembolic events after hip or knee replacement surgery — following its approval to be used for the

Top Stories

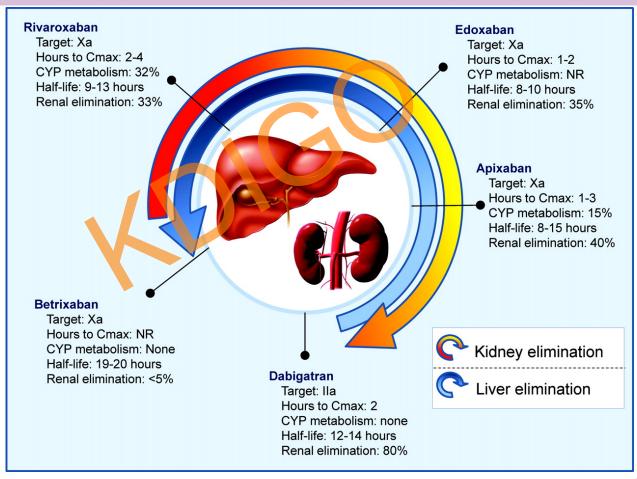


Researchers survey the psychological factors of medication adherence

-) Heartburn drug esomeprazole is first proton pump inhibitor to be sold outside pharmacies in the UK
- Tamiflu shortens flu symptoms by a day, study finds

Perception of drug cost influences placebo response in Parkinson's disease

) Dispensing: it's time to let it go



Pharmacokinetics of novel selective oral anticoagulants

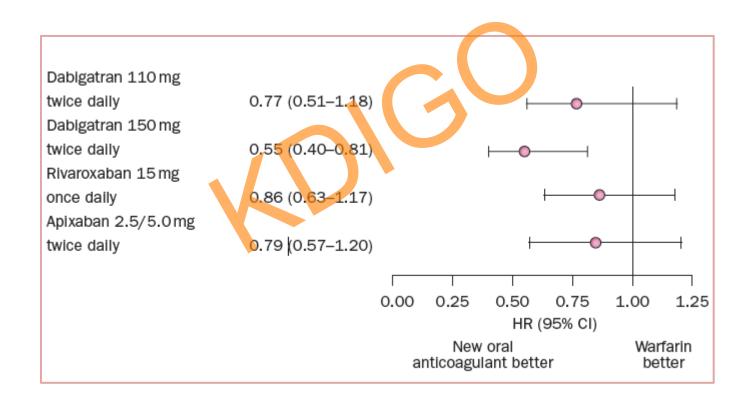
Major Regulatory Agency Recommendations for Novel Oral Anticoagulants in Patients with CKD

Agency	Drug				
	Dabigatran	Api <mark>x</mark> aban	Rivaroxaban		
FDA ^{42,43}	Stage 3 CKD: 150 mg twice daily Stage 4 CKD: 75 mg twice daily	NR	15 mg daily for CrCl 15–49 ml/min		
European Medicines Agency ^{46,47}	Stage 3 CKD: 110 mg twice daily if aged >80 years or at high risk of bleeding Stage 4 CKD: not approved	NR	15mg daily for CrCl 15–49ml/min		
Health Canada ^{44,45}	CrCl 30–50 ml/min: either 110 mg or 150 m twice daily except 110 mg twice daily for those aged >75 years and CrCl <50 ml/min Stage 4 CKD: not approved		15 mg daily for CrCl 30–49 ml/min Stage 4 CKD: not approved		

Overview of Phase III Randomized Trials of New Oral Anticoagulants

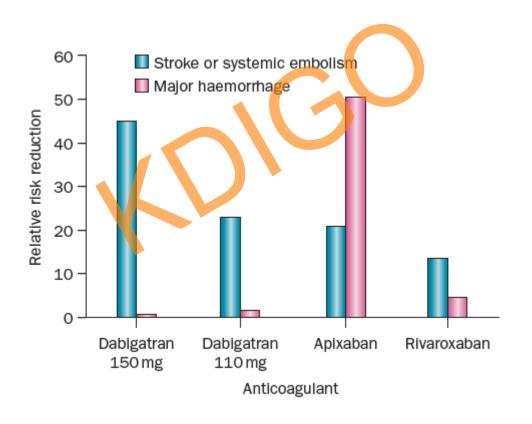
Study (n)	Agents	Design features	Exclusion criteria related to CKD	Dose adjustment related to CKD	Stage 3 CKD (%)	Mean time in therapeutic range (INR 2-3)	Main results‡
RE-LY ⁹ (18,113)	Dabigatran 150 mg or 110 mg twice daily vs warfarin	Warfarin given open-label	eCrCl <30 ml/min	None	19% eCrCl 30–49 ml/ min	64%	Stroke, non-CNS embolism and cardiovascular mortality reduced by dabigatran 150 mg vs warfarin; major haemorrhage reduced by dabigatran 110 mg vs warfarin; intracranial bleeding reduced by both doses of dabigatran vs warfarin; no significant difference in total mortality
AVERROES ¹⁰ (5,599)	Apixaban 5 mg twice daily vs aspirin	Double-blind; restricted to those deemed unsuitable for warfarin	Serum creatinine >221 µmol/l or eCrCl <25 ml/min	2.5 mg twice daily if serum creatinine ≥133 µmol/I plus age ≥80 years or weight ≤60 kg	30% eCrCl 30–59 ml/ min	NA	Stroke and non-CNS embolism reduced by apixaban vs aspirin; major haemorrhage and intracranial bleeding comparable with both agents; no significant difference in cardiovascular or total mortality
ROCKET AF ¹¹ (14,264)	Rivaroxaban 20 mg per day vs warfarin	Double-blind; restricted to those at high risk of stroke	eCrCl <30 ml/min	15 mg per day if CrCl <50 ml/min	21% eCrCl 30–49 ml/ min	55%	Rivaroxaban noninferior to warfarin for stroke and non-CNS embolism; major haemorrhage comparable with both agents; intracranial bleeding reduced by rivaroxaban vs warfarin; no significant difference in cardiovascular or total mortality
ARISTOTLE ¹² (18,201)	Apixaban 5 mg twice daily vs warfarin	Double-blind	Serum creatinine >221 µmol/I or eCrCI <25 ml/min	2.5 mg twice daily if serum creatinine ≥133 µmol/I plus age ≥80 years or weight ≤60 kg	15% eCrCl 30–50 ml/ min	62%	Stroke, non-CNS embolism, major haemorrhage, intracranial bleeding and total mortality reduced by apixaban vs warfarin; no significant difference in cardiovascular mortality

^{*}Publication of the phase III ENGAGE AF-TIMI 48 trial testing the factor Xa inhibitor edoxaban is anticipated in late 2012. **Among all participants; for results in subgroups of patients with stage 3 CKD, see Table 3. Abbreviations: CKD, chronic kidney disease; CNS, central nervous system; eCrCl, estimated creatinine clearance; INR, international normalized ratio; NA, not available.

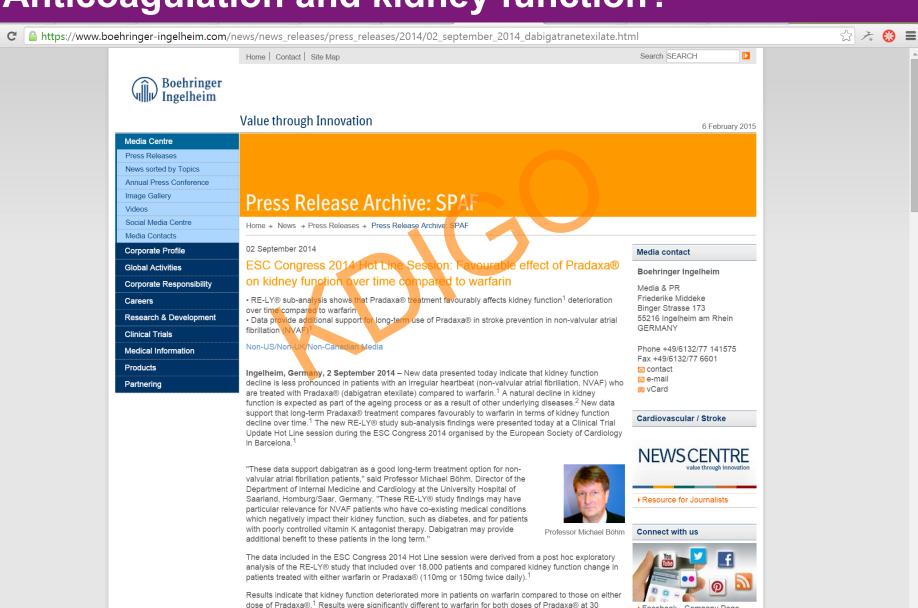


Event Rates with Apixaban versus ASA by CKD Status (AVERROES Trial)

	Apixaban rates (n/N)	Aspirin rates (n/N)	Hazard ratio (95% CI)	P value
Primary events†				
eGFR ≥60 mL/min per 1.73	m ² 1.7% per year (34/1917)	2.8% per year (60/1911)	0.57 (0.37-0.87)	.009
Stage III CKD		5.6% per year (51/840)		<.001; <i>P</i> for
Major hemorrhage				interaction = .10
eGFR ≥60 mL/min per 1.73	m ² 0.9% per year (19/1917)	0.8% per year (18/1911)	1.1 (0.56-2.0)	.85
Stage III CKD	2.5% per year (24/857)		1.2 (0.65-2.1)	.58; P for
				interaction = .82
All deaths				
eGFR ≥60 mL/min per 1.73	m ² 2.3% per year (49/1917)	3.3% per year (71/1911)	0.70 (0.49-1.0)	.05
Stage III CKD	6.2% per year (59/857)	7.1% per year (66/840)	0.86 (0.61-1.2)	.42; <i>P</i> for interaction = $.39$



Hazard Ratios for Patient Subgroups with Stage 3 CKD from RCTs Comparing Novel Oral Anticoagulants with Warfarin for Primary Outcome of Stroke/Systemic Embolism.



Relative Risk Reductions in Stroke or Systemic Embolism and Major Haemorrhage by Novel Oral Anticoagulants versus Warfarin in Patients with Moderate CKD

Anticoagulation and kidney function?

months, with similar patterns seen in different Pradaxa® subgroups. Patients who were poorly controlled

Facebook - Company Page

KDIGO/Atrial Fibrillation

Future Directions for Cardiovascular Disease in Chronic Kidney Disease

Condition	Knowledge Gaps	Research Needs
Atrial	 Risks/benefits of anticoagulation 	 Randomized clinical trials of
fibrillation	with warfarin for stroke	warfarin and novel
	prevention.	anticoagulants for stroke
	 Efficacy, safety of dabigatran in 	prevention in CKD 4-5D patients
	stage 4 CKD.	with atrial fibrillation.
	 Uncertainty regarding validity of 	 Interventions to prevent atrial
	2005 KDOQI guidelines regarding	fibrillation: radio frequency
	anticoagulation in dialysis patients	ablation, percutaneous closure of
	with atrial fibrillation.	the left-atrial appendage,
		surgery.

CKD, chronic kidney disease; KDOQI, Kidney Disease Outcomes Quality Initiative

Summary

- CKD is associated with an increased risk of Atrial fibrillation, thromboembolism and venous thrombosis
- Bleeding risk is also increased in CKD
- The pharmacokinetics of new agents vary substantially in CKD
- The risk-benefit profile is likely to vary substantially by patient factors including kidney function, but also by the agent used
- Could there also be an effect on kidney function?

THE GEORGE INSTITUTE FOR GLOBAL HEALTH

