The EVOLVE-ing Spectrum of CKD-MBD

Glenn M. Chertow, MD, MPH
KDIGO Controversies Conference on CKD-MBD
Disclosures: Amgen, Keryx, Ardelyx

Study Schema

Primary endpoint

Time to the primary composite endpoint comprising: all-cause mortality or non-fatal cardiovascular events (myocardial infarction, hospitalization for unstable angina, heart failure or peripheral vascular event)

Secondary endpoints

Fracture, PTX, CV death, stroke; components of primary composite endpoint

Summary of Analytic Approach

- All endpoint data collected and analyzed in accordance with the intent-to-treat (ITT) principle
- Kaplan-Meier product limit estimates of eventfree survival time; relative hazards and 95% confidence intervals computed from proportional hazards regression models, stratified by country and diabetes
- Age-adjusted, multivariable-adjusted and lag censoring analyses were pre-specified, as were analyses censoring at kidney transplantation, PTX and use of commercial cinacalcet

Baseline Patient Characteristics

Demographics	Cinacalcet (N = 1948)	Placebo (N = 1935)		
Age (yr) – median (p10, p90)	55.0 (35.0, 74.0)	54.0 (35.0, 73.0)		
Female sex	41.5%	39.7%		
Race or ethnic group				
White	57.7%	57.7%		
Black	21.0%	22.1%		
Other	21.3%	20.2%		
Quételet's (body mass) index (kg/m²) – median (p10, p90)	26.3 (20.4, 36.4)	26.4 (20.6, 36.7)		
Dialysis vintage (months) – median (p10, p90)	45.4 (8.5, 142.0)	45.1 (9.9, 149.6)		
Blood pressure (mm Hg) – median (p10, p90)				
Systolic	140 (110, 176)	141 (111, 177)		
Diastolic*	80 (60, 100)	80 (60, 100)		

Baseline Patient Characteristics

Medical History	Cinacalcet (N = 1948)	Placebo (N = 1935)
History of diabetes	33.6%	33.5%
Type 1	3.7%	4.2%
Type 2	29.8%	29.4%
History of cardiovascular disease	95.4%	94.6%
Hypertension	92.5%	91.7%
Heart failure	23.1%	23.6%
Peripheral vascular disease	16.1%	16.6%
CABG	6.9%	8.0%
PCI	6.7%	6.8%
Myocardial infarction	12.3%	12.6%
Stroke	8.3%	10.0%
Transient ischemic attack*	5.1%	3.8%
Amputation	6.2%	6.7%
Atrial fibrillation	10.4%	11.6%

CABG = Coronary Artery Bypass Graft; PCI = Percutaneous coronary intervention N = Number of randomized patients. Percentages are based on N. *p-value<0.05

Biochemical Parameters (ITT)

P Binders and Vitamin D (ITT)

IV Paricalcitol-equivalent dose is calculated using the following: 2 mcg Paricalcitol (IV) = 1 mcg Doxercalciferol (IV) = 1 mcg Alfacalcidol (IV) = 0.5 mcg Calcitriol (IV) = 1 mcg Paricalcitol (PO) = 0.5 mcg Alfacalcidol (PO) = 0.25 mcg Calcitriol (PO)

N = Number of patients who received at least one dose of study drug; n = Number of patients with study assessment at the study visit; IV = intravenous; PO = oral

Kaplan-Meier Plot of Primary Composite Endpoint (ITT)

Kaplan-Meier Plot of All-Cause Mortality (ITT)

Unadjusted and Adjusted ITT Analyses

Model	Relative Hazard	95% CI	P-value
Unadjusted	0.93	0.85 to 1.02	0.11
Age-adjusted	0.88	0.81 to 0.97	0.007
Multivariable (best fit)	0.88	0.79 to 0.97	0.008
Multivariable-adjusted (all included)	0.88	0.80 to 0.98	0.02

Relative Hazards of Primary Composite Endpoint (ITT)

Time to First Discontinuation of Study Drug due to Protocol-specified Reasons*

Time to First Discontinuation from Study Drug due to Non-protocol Specified Reasons*

Reasons for Discontinuation

	Cinacalcet (N=1948)	Placebo (N=1935)
Subjects who discontinued study drug (%)	66.7	70.5
Ineligibility determined	0.1	0.3
Consent withdrawn	1.8	2.2
Lost to follow-up	0.6	0.6
Adverse event	15.8	11.8
Protocol-specified reasons	22.1	20.1
Parathyroidectomy	2.4	7.6
Kidney transplant	13.3	11.9
Calcium < 7.5 mg/dL or symptoms of hypocalcemia	1.1	0.1
Low PTH	5.2	0.4
Pregnancy	0.0	0.1
Administrative decisions/subject request*	20.6	30.7
Hyperparathyroidism	1.9	6.5
Commercial cinacalcet	0.4	1.6
Adverse event	2.3	1.2
Non-compliance	3.5	3.3
Other administrative decision/subject request	12.9	19.7
Commercial cinacalcet	1.2	5.6
Other reasons	5.4	4.5
Missing reason	0.2	0.2
Never received study drug	0.5	0.6

Non-adherence to Study Drug

- Patients who prematurely stop study drug assume risk similar to the opposing group
 - "Drop-in": patients randomized to placebo who prematurely stop study drug and start commercial cinacalcet prior to primary endpoint
 - "Drop-out": patients randomized to cinacalcet who prematurely stop taking study drug prior to primary endpoint

Total (N=3883)	n (%)	Observed Rates (%/yr)	Protocol Rates (%/yr)
Drop-in (Placebo)	384 (20%)	7.4	10.0
Drop-out (Cinacalcet)	1207 (62%)	27.3	10.0

Intention-to-Treat (ITT)

- 3 principles of ITT*:
 - 1. Use all randomized patients
 - 2. Use original randomization allocation, regardless of adherence to study drug
 - 3. Measure outcome data on all patients
- "Gold standard" to assess the effectiveness of a study drug in randomized clinical trials
 - Provides unbiased comparisons between the 2 groups
 - Known or unknown prognostic factors of the outcome should be balanced when randomization is preserved

Time off Study Drug versus Time on Study

Months	Cinacalcet (N=1948)	Placebo (N=1935)
Time on study Median (Q1, Q3)	50.6 (31.3, 56.4)	50.4 (26.7, 56.4)
Time on study drug Median (Q1, Q3)	21.2 (8.1, 40.8)	17.5 (7.1, 37.9)

Time on study drug was less than half of the time patients were on study

Considering Non-adherence

- We anticipated non-adherence to study drug
- We pre-specified lag censoring analysis (6 months) in the Statistical Analysis Plan
- We pre-specified two additional approaches in the Supplemental SAP
 - Iterative Parameter Estimation (IPE)
 - Inverse Probability Censoring Weight (IPCW)

Lag Censoring Analysis

- Censors data at a timepoint when the treatment effect was thought to be diminished
 - Requires clinical judgement
- Preserves randomization

ITT versus Lag Censored Analysis

Kaplan-Meier Plot of Primary Composite Endpoint (Lag Censoring)

Kaplan-Meier Plot of Mortality (Lag Censoring Analysis)

Lag Censoring Analysis PROs/CONs

PROs

Preserves randomization

Simple to use and easy to understand

CONs

Assumes stopping study drug is random between the 2 treatment groups

Prone to bias since patients who are non-adherent may have different prognostic characteristics and may be more/less likely to experience an event than those who did not (informative censoring)

Violates ITT principle:

Does not include all follow-up information

Iterative Parameter Estimation (IPE)

- Based on accelerated failure time model
 - Treatment effect on survival time is modeled through a multiplicative factor (exp⁻ⁿ)

$$T_{calci} = \exp^{-n} T_{placebo}$$
 (1)

T_{calci} = survival time of cinacalcet patients who remained on study drug

T_{placebo} = survival time of placebo patients who are not receiving commercial cinacalcet

- Models survival time as if dropin patients never started commercial cinacalcet and dropout patients remained on study drug
 - Using algorithm 1, the survival time is contracted for dropin patients and expanded for dropout patients
 - Survival times are transformed through iterative process until the model converges

IPE PROs/CONs

PROs

Preserves randomization

No need to model the pattern when patients dropin/dropout

Simple to use and relatively easy to understand

CONs

Requires parametric modeling, need to specify correct distribution.

Results may be sensitive to selected distribution.

Required to re-censor data when the transformed survival time is beyond the study termination date

Assumes non-adherence is random (not related to prognostic factors of the outcome)

Computational methods such as bootstrapping are required to obtain robust confidence intervals

Inverse Probability of Censoring Weight (IPCW)

- IPCW method censors data when non-adherence occurs (ie, weight=0 for time periods after this timepoint)
- For patients who were adherent and had similar characteristics to those who were not, IPCW method assigns bigger weights to these patients to "re-create" the population that would have been observed
- Weights are calculated based on the inverse of the probability that patients remains adherent using a logistic regression model
- Final hazard ratio is derived from a weighted Cox regression model

IPCW (cont'd)

- In EVOLVE, demographics, adverse events and lab assessments were used to estimate the probability of adherence
 - Age
 - Sex
 - Race group
 - Country
 - History of diabetes
 - Randomized treatment group
 - Time dependent covariates of PTH, adverse events of hypocalcemia, nausea or vomiting

IPCW PROs/CONs

PROs

Preserves randomization

Takes into account informative censoring

Adjusts for time dependent confounders

CONs

Difficult model specification; must have no unknown confounders for adherence Missing data may cause biased weights

Computationally difficult to implement: creation of dataset is difficult; parameter estimates may not be stable since model may not converge

Sensitive to amount of non-adherent patients, results may be biased or unstable

Results – Primary Composite Endpoint

Method	Hazard Ratio	95% CI	p-value
ITT	0.93	(0.85, 1.02)	0.112
Lag censoring	0.85	(0.76, 0.95)	0.003
IPE	0.87	(0.75, 1.02)	0.081
IPCW	0.77	(0.66, 0.88)	<0.001

Primary Composite Endpoint: Sensitivity Analyses

Analysis Type	Placebo (N=1935)	Cinacalcet (N=1948)	HR (95% CI)	p-value
ITT	952 (49.2)	938 (48.2)	0.93 (0.85, 1.02)	0.112
Lag Censoring (6 mos)	658 (34.0)	638 (32.8)	0.85 (0.76, 0.95)	0.003
Censor at PTX	911 (47.1)	916 (47.0)	0.90 (0.82, 0.99)	0.031
Censor at KTX	907 (46.9)	891 (45.7)	0.90 (0.82, 0.99)	0.029
Censor at Commercial Cinacalcet Use	818 (42.3)	870 (44.7)	0.90 (0.82, 0.99)	0.032
Censor at PTX or Commercial Cinacalcet Use	786 (40.6)	854 (43.8)	0.87 (0.79, 0.96)	0.006
Censor at PTX, Commercial Cinacalcet, or KTX	748 (38.7)	812 (41.7)	0.84 (0.76, 0.93)	<0.001

Kaplan-Meier Plots for Time to First Parathyroidectomy or Time to First Episode of Severe Unremitting HPT (ITT)

Severe, unremitting HPT

Placebo

Cinacalcet

- Pre-specified and defined as
- PTH > 1000 pg/mL (106.0 pmol/L) with serum calcium
 > 10.5 mg/dL (2.6 mmol/L) on 2 consecutive occasions

 OR
- PTH > 1000 pg/mL with serum calcium >10.5 mg/dL on a single occasion and subsequent commercial cinacalcet use within 2 months of the laboratory assessment

OR

- parathyroidectomy

Kaplan-Meier Plots for Time to First Clinical Fracture (ITT)

Summary of Adverse Events

- Exposure-adjusted rates (per 100 patient-years), cinacalcet v. placebo
 - Serious AE [53.3 v. 56.9]
 - All AE [273.2 v. 217.8]*
 - Hypocalcemia [6.7 v. 0.9]*
 - Nausea [18.3 v. 9.1]*
 - Vomiting [15.4 v. 8.0]*
 - Neoplastic events [2.9 v. 2.5]
 - Seizure [1.2 v. 0.8]
- 7-fold increase in hypocalcemia, 2-fold increase in nausea/vomiting

Conclusions

- Cinacalcet significantly reduces rates of parathyroidectomy and severe, unremitting hyperparathyroidism
- Using an unadjusted intent-to-treat approach, there was a 7% reduction in the risk of death or major cardiovascular events (myocardial infarction, hospitalization for unstable angina, heart failure and peripheral vascular events), a non-significant (non-definitive) result
- After adjusting for age, or for age + other characteristics, there was a nominally significant 12% reduction in the risk of death or major cardiovascular events
- With lag censoring, effects were more pronounced
- Any potential benefits must be balanced against risks and discomforts

Key Discussion Points

- Conducting clinical trials of approved drugs
- Conflicting roles of clinical practice guidelines
- Effects of co-interventions
- Unadjusted or adjusted primary analysis
- Analytic approaches in clinical trials with reduced adherence