Salt Intake and Cardiovascular Risk

Kirsten Bibbins-Domingo, PhD, MD, MAS Associate Professor of Medicine and of Epidemiology and Biostatistics University of California, San Francisco

<u>Outline</u>

- Evidence linking salt and blood pressure
- Evidence linking salt and cardiovascular disease
- Challenges studying salt and cardiovascular disease
- Salt, CKD, and cardiovascular disease

↑ BP with age associated with higher salt intake (INTERSALT) – 52 communities worldwide, n=10,079

Adapted Intersalt, BMJ 1988;297:319-32

The Effect on Systolic and Diastolic Blood Pressure of Reduced Sodium Intake and the DASH Diet

Sacks F et al. N Engl J Med 2001;344:3-10

•412 participants with prehypertension or Stage 1 hypertension

•High Sodium 140-150 mmol

Intermediate 100-110 mmol

•Low Sodium 60-70 mmol

The Effect on Systolic Blood Pressure of Dietary Sodium Intake, According to Subgroup

Sacks F et al. N Engl J Med 2001;344:3-10

Relation between the net change in 24-hour urinary sodium excretion and blood

He, F. J. et al. Hypertension 2003;42:1093-1099

<u>Outline</u>

- Evidence linking salt and blood pressure
- Evidence linking salt and cardiovascular disease

Direct evidence for salt and CVD

Possibly independent of blood pressure

- Endothelial damage, direct effect on LVH, vascular reactivity
- Adverse effects of sympathetic, RAAS activation

Observational studies of CVD:

- Meta-analysis (Strazullo, BMJ 2009) per 6 gm salt
- Stroke: RR=1.23 (95% CI=1.06-1.43), p=0.007
- CVD: RR=1.14 (95% CI=0.99-1.32), p=0.07

Chang (AJCN 2006)

- Five kitchens of veterans' home in Taiwan
 - 1981 veterans
 - 40% were hypertensive
- Kitchens cluster-randomized to potassium-enriched (lower Na) or regular salt ('95-'99)
- Significant reduction in CVD mortality
 RR = 0.59 (95% CI = 0.37-0.95)
- Experimental group lived longer (0.3-0.9 yrs)
 - Spent less (\$426/yr) on inpatient care for CVD

Cumulative hazard ratios (HRs) of cardiovascular disease-related deaths for the treatment and control groups

Chang, H.-Y. et al. Am J Clin Nutr 2006;83:1289-1296

TOHP I and II Trials of Blood Pressure

- TOHP I (1987-1990)
 - DBP 80-89, aged 30-54 years, 18-month fu, 10 sites
 - 2,182 randomized participants, 744 in sodium arm
- TOHP II (1990-1995)
 - DBP 83-89, aged 30-54 years, overweight, 3-4 year fu
 - 2,382 randomized participants
- TOHP Follow-up
 - Observational follow-up 10-15 and 5-10 yrs after I and II
 - 4,526 participants
 - Medical records/death linkage
 - Intent to treat

TOTAL CVD by Randomized Sodium Intervention in TOHP Follow-up Study

	RR	95% CI	р				
Adjusted for Demographics							
Overall	0.75	0.57-0.99	0.044				
Adjusted for Demographics, BS Wt and Na							
Overall	0.70	0.53-0.94	0.018				
Phase I	0.48	0.25-0.92	0.027				
Phase II	0.79	0.57-1.09	0.16				

Cumulative Incidence of CVD or Death 0.15 TOHP I Na Control 0.10 Active Na 0.05 0.00 5 10 15 0

Cumulative Incidence of CVD Adjusted for Clinic, Age and Sex

Follow-up Years

Cumulative Incidence of CVD Adjusted for Clinic, Age and Sex

<u>Outline</u>

- Evidence linking salt and blood pressure
- Evidence linking salt and cardiovascular disease
- Challenges studying salt and cardiovascular disease

Salt intake in the United States

- Recommended daily salt intake:
 < 5.8gm/day (<100 mmol sodium or 2300 mg)
 1 gm salt = approx 17 mmol or 400 mg sodium
- WHO recommendations

 <5 gm/day (<85 mmol sodium or 2000 mg)

Current daily intake in US:
 – 9.4 gm/day (3700 mg sodium)

Average daily salt intake in male and female Americans, as ascertained from 24-hour dietary recall, 2005-2006

Source: Appel L and Anderson C. N Engl J Med 2010;362:650-652

Mean (95% CI) 24-h urinary sodium excretion (mg/24 h) by study year (US studies)

Bernstein, A. M. et al. Am J Clin Nutr 2010;92:1172-1180

Where is the salt?

80% in processed or pre-prepared foods

Sources: Mattes et al.

National Cancer Institute

U.S. National Institutes of Health | www.cancer.gov

Risk Factor Monitoring and Methods

Table 1a. Mean Intake of Sodium, Mean

Cancer Control and Population Sciences

Cancer Control and Population Sciences Home

× 10 . 11

Search:

Diet: What We've Learned Studies Assessing Dietary Intakes Short Instruments About

60

Applied Research Home

Risk Factor Monitoring

and Methods Home

Diet

Intake of Energy, and Percentage Sodium Contribution of Various Foods Among US Population, by Age, NHANES 2005-06

Sources of Sodium among the US Population, 2005–	Age Group (years)					irs)							
06:			AII					14-		19.	31.	51.	
Introduction			Persons	2.18	2.3	4-8	9.13	18	19+	30	50	70	71+
List of specific foods	Sample	e Size	8549	3778	497	899	1047	1335	4771	1310	1537	1224	700
Mean Intakes & Percentage Contribution of Foods:	Mean Intake of Sodium (mg)		3436	3129	2144	2694	3227	3793	3535	3814	3781	3306	2686
Among US Population, by Age Among US Males, by Age	Mean I	ntake of Energy (kcal)	2157	2027	1471	1802	2035	2427	2199	2407	2354	2020	1691
	Rank	Food Group	a 2.										
	1	Yeast breads	7.3	7.2	6.1	7.4	6.8	7.6	7.3	5.9	6.5	8.8	10.6
Among US Females, by Age	2	Chicken and chicken mixed dishes	6.8	7.4	5.1	6.8	7.3	8.3	6.6	7.6	7.1	5.5	4.6
Among US Population, by Race/Ethnicity & Family Income.	3	Pizz a	6.3	9.4	4.7	7.6	8.7	12.1	5.4	7.5	6.4	3.3	1.9
Mean Intakes & Mean Contribution of Foods:	4	Pasta and pasta dishes	5.1	6.7	9.8	8.3	7.0	4.8	4.6	5.3	4.3	4.7	3.9
	5	Cold cuts	4.5	4.3	1.9	3.8	4.4	4.6	4.6	3.9	5.3	4.0	4.8
Among US Population, by Age	6	Condiments	4.4	4.1	3.4	3.4	4.4	4.5	4.4	4.4	4.9	4.1	3.0
Among US Males, by Age	7	Mexican mixed dishes	4.1	3.0	2.1	2.7	4.5	4.2	4.2	6.8	4.7	2.4	0.5
Among US Females try Age	8	Sausage, franks, bacon, and ribs	4,1	4.6	6.2	4.9	5.1	3.6	4.0	3.4	3.8	4.6	4.5
Amona US Population, by Race/Ethnicity & Family Income	9	Regular cheese	3.5	3.5	4.1	3.2	3.1	3.9	3.5	3.9	3.5	3.5	3.1
	10	Grain-based desserts	3.4	3.7	2.5	4.2	3.9	3.5	3.4	2.8	3.3	3.5	4.6
	11	Soups	3.3	2.4	3.2	3.0	2.4	1.9	3.6	3.1	2.7	5.1	5.1
	12	Beef and beef mixed dishes	3.3	2.5	1.9	1.6	2.8	2.9	3.5	3.9	3.5	3.0	3.6
	13	Rice and rice mixed dishes	2.6	1.9	2.1	1.0	2.2	1.6	2.0	2.3	3.1	2.2	1.0
	14	Eggs and egg mixed dishes	2.6	2.0	1.9	1.8	1.9	2.4	2.7	2.4	2.7	3.0	2.9

Sources of salt in our grocery bags

- 35% from cereal & cereal products

 breads, cereals, pastries
- 26% from meat & meat products
- 8% from milk & milk products —milk, cheese

Why do food manufacturers use so much salt?

Preservative

Weight of food

Taste

Inexpensive way to add flavor

- Habituated to very salty food
- Can be unlearned
 - (6 wk down regulation of salt taste receptors)

Less sodium intake when adding salt at the table

Beauchamp et al. JAMA 1987

Finland

Salt intake (g/day by 24 hr urine)

Diastolic BP (mmHg)

Stroke mortality (1/100000)

Karppanen & Mervaala. Prog Cardiovasc Dis 2006;49:59-75.

Experience around the world

• Japan

Educational efforts in the 60's resulted in measurable decreases in salt intake, blood pressure, and stroke

 Targeted individual education because most intake from salt added during cooking and on table.

• UK

Mostly salt from processed/prepared foods. Set standards, efforts directly with food manufacturers, 10% over the first 3 years

Other countries with sodium reduction efforts

Percent change in incident CHD with 3 gm/day reduction in dietary salt

Bibbins-Domingo, K. et. al. NEJM, 2010, 362 (7):590-99.

Comparing salt reduction to other preventive measures (deaths 2010-2019)

Reducing salt \rightarrow reducing costs

- WHO estimates \$1 per person to reduce salt through regulatory means, public campaigns, monitoring.
 - More cost effective than treating all hypertensives
 - Actually cost savings even if only modest reductions in salt achieved.
 - Gradual reduction over the decade to 1 gm/day reduction -> 7 dollars saved in healthcare for 1 dollar spent.

<u>Outline</u>

- Evidence linking salt and blood pressure
- Evidence linking salt and cardiovascular disease
- Challenges studying salt and cardiovascular disease
- Salt, CKD, and cardiovascular disease

Salt, CKD, and cardiovascular disease

- CKD is a salt-sensitive state (Koomans HA, Roos JC, Boer P, et al. Miner Electrolyte Metab 1982; 7:134–145; Weir MR, Dengel DR, Behrens MT, Goldberg AP. Hypertension 1995; 25:1339–44)
- Night-time "non-dipping" in CKD may contribute to CVD risk
 - Nocturnal hypertension compensates for diminished daytime natriuresis - enhances pressure natriuresis at night. кітига, Dohi, Fukuda, Hypertension Research **33**, 515-520 (June 2010)
- Low sodium enhances antihypertensive and antiproteinuric properties of ACE inhibition (Navis G, et al. Kidney Int .31:815-819, 1985)

Sodium restriction in ESRD

2 site dialysis unit comparison (Kayikcioglu...Ok, Nephrol. Dial. Transplant. (2009) 24 (3): 956-962)

- Site A Salt <5 gm, intensive ultrafiltration to maintain predialysis BP <140/90 without meds
- Site B Medications to control blood pressure
- Comparison of patients at each center at least one year.
- Age and dialysis duration distribution similar between centers.

	Centre A	Centre B	P-value
	(n = 190)	(n = 204)	
Use of antihypertensive medication (n = %)	13 (7%)	86 (42%)	0.001
ACE-/I or ARB	8	27	
Calcium channel blocker	1	43	
Beta blocker	2	3	
Furosemide	1	1	
Combination of two medications	1	12	
Interdialytic weight gain (kg)	2.29 ± 0.83	3.31 ± 1.12	0.0001
Interdialytic weight gain (kg for 70 kg man)	2.61 ± 0.98	4.05 ± 1.52	0.0001
Systolic BP (mmHg)	126 ± 15	126 ± 21	ns
Diastolic BP (mmHg)	75 ± 12	76 ± 11	ns
Pulse pressure (mmHg)	51 ± 9	50 ± 12	ns
Systolic BP ≥140 (%)	18	37	0.001
Diastolic BP ≥90 (%)	12	8	ns
Patients with systolic BP ≥140 and/or diastolic BP ≥90			
At the time of starting the HD programme	78	83	ns
Current situation	19	37	0.001
Intradialytic hypotension (number of episode per	11	27	0.009
100 HD sessions)			

	Centre-A	Centre-B	P-value
	(n = 190)	(n = 204)	
LA indices			
LA index (cm/m²)	2.40 ± 0.34	2.74 ± 0.53	0.0001
LA volume index (mL/m²)	29.5 ± 10.0	36.7 ± 21.7	0.0001
LV measurements and indices			
LV diastolic index (cm/m ²)	2.61 ± 0.33	2.97 ± 0.64	0.0001
LV end-systolic index (cm/m ²)	1.60 ± 0.29	1.96 ± 0.47	0.0001
Interventricular septalindex (cm/m ²)	0.79 ± 0.13	0.83 ± 0.14	0.018
Posterior wall index (cm/m ²)	0.76 ± 0.11	0.83 ± 0.11	0.0001
LV ejection fraction (%)	68 ± 10	63 ± 09	0.0001
LV fractional shortening (%)	39 ± 8	35 ± 6	0.0001
LV mass indexed to height ^{2.7} (g/m ^{2.7})	59 ± 16	74 ± 27	0.0001
LV hypertrophy (%) ^a	124 (74%)	171 (88%)	0.001
Pulsed Doppler parameters			
Mitral-inflow E (cm/s)	73 ± 22	76 ± 27	ns
Mitral-inflow A (cm/s)	83 ± 18	82 ± 25	ns
Deceleration time (min/s)	0.23 ± 0.06	0.28 ± 0.07	0.0001
Isovolumic relaxation time (min/s)	0.08 ± 0.01	0.12 ± 0.02	0.0001
Mitral-inflow A-wave duration (min/s)	0.14 ± 0.02	0.16 ± 0.03	0.0001
E/A ratio	0.90 ± 0.31	0.96 ± 0.33	0.076
Mitral valve lateral annulus Ee/Ae (min/s)	0.99 ± 0.43	0.89 ± 0.41	0.034

Outcomes at 180 days

<u>Conclusions</u>

- Lower dietary salt lowers blood pressure
 - May be particularly beneficial in CKD as a saltsensitive state
- Lower dietary salt lowers CVD risk.
 - Via blood pressure lowering, possibly other direct mechanisms

<u>Conclusions</u>

- Both clinical management and research are complicated by high salt food environment.
 - Most of our patients are consuming well above guideline targets, cannot comply with recommendations without substantial personal or environment changes.

 Only few studies examining salt reduction in CKD or ESRD and CVD outcomes
 Have the potential for high yield results