

GENERAL PRINCIPLES IN THE MANAGEMENT OF GLOMERULAR DISEASE

Richard J. Glassock, MD
Geffen School of Medicine at UCLA

KDIGO Controversies Conference on Glomerular Diseases
Singapore
November 17, 2017

Disclosure of Interests

Compensated Consultant to:

Genentech-Roche, Bristol-Myers Squibb, Chemocentryx, Achillion, Omeros, Apelliis, Sanofi-Genzyme, Mallinkrodt (Data Monitoring Committees, Advisory Boards)

UpToDate (Wolters-Kluwer), American Journal of Neprhology (Karger)

Stock

Reata, Inc

Outline of Presentation

- Chapter 2- KDIGO-GN (2012)- Topic Headings
- Analysis of 2012 Topics and highlighting possible revisions of content
- Suggested New Topic Headings
- Conclusions and Reccomendations
- Adaptiv CPG incorporating SCAMPS

Overview

These are over-arching statements that apply broadly to many or all of the specfic conditions to be analyzed by an evidence-based Clinical Practice Guideline (CPG)

□ Applications of or specific exceptions to these general principles and the relevant rationales are delegated to the individual Chapters of a CPG

☐ The evidence underlying these General Principles varies widely and remains largely *Ungraded or Non-*

Topic Headings

(KDIGO-2012- Cattran and Feehally)

- Kidney Biopsy
- Assessing Kidney Function
- Outcome Measures
- Impact of Age/Gender/Ancestry
- Management of Complications/Risk Avoidance
- Adverse Effects of Therapy
- Therapeutic Agent Monitoring
- Pregnancy
- Costs
- Post-Transplant Recurrent Disease
- Research Recommendations

GENERAL PRINCIPLES: Renal Biopsy

- □ Indications/Contraindications/Technique/Specimen Adequacy/Risk of Complications
- □ Analysis requirements (LM, special stains, IF, EM, LD-MS, antigen identification and rescue) defining the minimum and optimal by specific disease
- ☐ Scoring methods and classfication criteria (when available; e.g.OXFORD-MEST-C). Emphasis on disease diagnosis and pathogenesis not "pattern of injury"
- Protocol or By-indication repeat renal biopsies

GENERAL PRINCIPLES: Assessment of Kidney Function

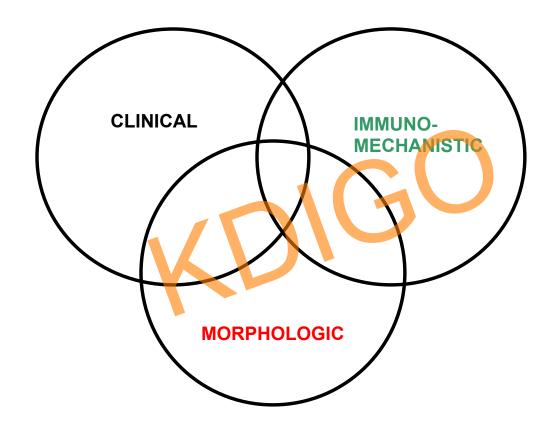
☐ Proteinuria (Albuminuria): Methods, Sources of error, Pitfalls, Albuminuria vs Total Protein, 24 hour vs untimed collections; Ratios (corrected and uncorrected for creatinine generation (UPCR/UACR). Protein selectivity (e.g. FEIgG); Beta2 microglobulinuria

☐ Uniform Definition of Nephrotic Syndrome and Nephrotic-Range Proteinuria

☐ Estimation of GFR: Equations, Biomarkers, Pitfalls and Limitations, Influence of Diet, Drug (e.g. Steroids)Sarcopenia, Obesity/Weight Loss; role og mGFR confirmation in clinical trials

GENERAL PRINCIPLES: Outcome and Prognosis Measures

- Definitions of Remissions (Disease Specific): Proteinuria (Time-averaged or other), hematuria and eGFR/mGFR (slope, abolute change)
- ☐ Definition of ESRD: Competing risks, CV vs all-cause
- ☐ Estimation of GFR: Pitfalls and Limitations; slopes, time to event, % change from BL. New Biomarker panels, Point-of-care mGFR;
- □ Definitions of *Futility and Point*–of–no-Return Disease-specific
- □ Quality of Life; Extension of Life Expectancy



Proteinuria as an Prognosis and Outcome Measure

- ☐ Choosing the optimal metric- Time averaged/Time-varying; UPCR or UACR; variability as an outcome measure
- ☐ Thresholds and prognosis- Must be disease specific. One size does not fit all
- □ Definitions of Proteinuria Remission-Relationship to mechanistic activity of disease; non-specific anti-protenuric actions of drugs (CNI)
- Quality of Proteinuria-Protein selectivity; FEIgG; Beta2 microglobulin; ATPR
- ☐ Effect of Proteinuria (and Hypoalbuminemia) on estimation of GFR
- ☐ Role of dual and monotherapy (ACEi/ARB)- Disease specific

Outcome Measures- A New Paradigm?

GENERAL PRINCIPLES: Impact of Age/Gender/Ancestry

□ Age as a factor in Renal Biopsy interpretation (FGGS); Age as a factor in response rate, complications, drug pharmacokinetics and pharmacodynamics; age and eGFR/ mGFR assesment

☐ Gender and disease/complications risk

□ Ancestry as a determinant of disease risk, therapeutic response and adverse events

GENERAL PRINCIPLES: Complications

- ☐ *Hypertension*: Goals, Definitions, Management
- □ Proteinuria: Threshold definitions (Disease specific), goals, non-specfic Management (e.g. RAS, diet, etc)
- Dyslipidemia: Definitons, Goals, Management
- Nephrotic Edema: Management
- ☐ Thrombophilia and Venous/Arterial Thromboembolism: Risks, Prevention and Therapy
- ☐ *Infections* Prophylaxis and Therapy

GENERAL PRINCIPLES: Adverse Effects of Therapy

□ Agent Specific Effects: Avoidance by individualization of therapy based on risk profiling (?pharmacogenomics); prophylaxis

☐ Combination Therapy

☐ Concomitant drugs: Drug-Drug interactions

☐ Genetic analysis: Pharmacogenomics

GENERAL PRINCIPLES: Therapeutic Monitoring

☐ Trough, 2 hour and AUC assesement of individual drug levels (e.g. MMF, CNI)

□ Pharmacodynamic monitoring of specfic drug effects (e.g. CD19, anti-PLA2R, ANCA, C3, C5b-C9)

□ Proteinuria and eGFR/mGFR

□ Repeat Renal Biopsy (indications and timing); disease specific

Pregnancy and Childbirth

□ Effect of Disease on Pregnancy Outcomes (Mother and Child)

☐ Effect of Therapy of Fetus (FDA Pregnancy Risk Categories)- Lactation and drugs

☐ Effect of therapy on fertility

□ Renal biopsy during Pregnancy

Treatment Costs

□ Costs and availability of treatment from a global perspective

□ Cost-effectivenss: basic principles- incremental costeffectiveness – DALY gained per \$ expended

□ Generics and Bio-similars

Post-Transplant Recurrence

□ Definitions of risk and impact on graft survival (Disease Specific)

□ Identification of high- and low-risk categories (e.g. Salb in FSGS)

☐ Prevention and management of recuurent disease

Some New Topic Areas for Consideration

- □ Social and Ecological determinants of Disease
- Better more Precise eGFR methods; Point-of-care mGFR methods
- ☐ Urinary proteomics; Renal biopsy transcriptomics
- Genetic analysis by whole exon or genome sequencing
- Cost-Effectiveness analyses
- "Adaptive" CPG based on immuno-mechanistic analyses
- ☐ Limitations of evidence from RCT- pragmatic trials; n of 1 trials
- Categorization of Adverse Events and Drug-Drug interactions

Potential Research Recommendations

Need for better and more accurate classifications of disease used by RCT- pathophysiological instead of morphological. Definition of disease, not "patterns of injury", should be as precise as feasible
Better and optimal surrogate outcome measures for specific diseases having a patient-centered impact
RCT of personalized, "adaptive" strategies for management based on serum/urine biomarkers
More Cost-Effectiveness research
Better definition of specifc roles and timing of genomic analyses and serial renal biopsy
More and better non-invasive assesment of irreversible fibrosis (imaging, urine proteomics) for treatment stratification

GENERAL PRINCIPLES: Concluding Remarks

- ☐ The tension between "one-size-fits-all" generic CPG and individualized therapy based on disease differentiating biomarkers is likely to increase over time!
- □ Response-
- More individualized algorithms (,,adaptive" CPG)
- Step-wise cascade of multi-parametric evaluation (serology, genes, proteomics, metabolomics) linked to therapeutiuc interventions
- Outcomes stratified into clinical (proteinuria/GFR/hematuria), immuno-mechanistic (antibodies/mediators) and morphologic (activity/chronicity) domains

GENERAL PRINCIPLES: Concluding Remarks

SCAMPS

(Structured Clinical Assesment and Management Plan)

Care pathways designed around Clinical Practice Guidelines

Farias M, et al Acad Med 2015; 90:143-145 and Sox H Acad Med 2015;90129-132

SCAMPS

(Farias and Sox, Acad Med, 2015)

Intended to Complement evidence-based CPG by adding Evidence-Based and Expert Opinion guided <i>Clinical Care Pathways</i> (algorithms) for diagnosis, prognosis or therapy
Unlike CPG multiple decision points are incorporated, and tools are available to deconstruct CPG's to facilitate SCAMP development
Starting points are literature reviews and evidence assessment (shared with CPG)
Tend to be more dynamic and clinically useful for a personalized approach to specific diseases. "CPGs are the items on the menu-SCAMPS are the recipe" (Sox H, 2015)

