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Patients with chronic kidney disease and severely
decreased glomerular filtration rate (GFR) are at high risk
for kidney failure, cardiovascular disease (CVD) and death.
Accurate estimates of risk and timing of these clinical
outcomes could guide patient counseling and therapy.
Therefore, we developed models using data of 264,296
individuals in 30 countries participating in the international
Chronic Kidney Disease Prognosis Consortium with
estimated GFR (eGFR)s under 30 ml/min/1.73m2. Median
participant eGFR and urine albumin-to-creatinine ratio
were 24 ml/min/1.73m2 and 168 mg/g, respectively. Using
competing-risk regression, random-effect meta-analysis,
and Markov processes with Monte Carlo simulations, we
developed two- and four-year models of the probability
and timing of kidney failure requiring kidney replacement
therapy (KRT), a non-fatal CVD event, and death according
to age, sex, race, eGFR, albumin-to-creatinine ratio, systolic
blood pressure, smoking status, diabetes mellitus, and
history of CVD. Hypothetically applied to a 60-year-old
white male with a history of CVD, a systolic blood pressure
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of 140 mmHg, an eGFR of 25 ml/min/1.73m2 and a urine
albumin-to-creatinine ratio of 1000 mg/g, the four-year
model predicted a 17% chance of survival after KRT, a 17%
chance of survival after a CVD event, a 4% chance of
survival after both, and a 28% chance of death (9% as a first
event, and 19% after another CVD event or KRT). Risk
predictions for KRT showed good overall agreement with
the published kidney failure risk equation, and both models
were well calibrated with observed risk. Thus, commonly-
measured clinical characteristics can predict the timing and
occurrence of clinical outcomes in patients with severely
decreased GFR.
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C hronic kidney disease (CKD) is an increasingly com-
mon problem globally.1 In the developing world, dis-
ease burden is shifting from communicable to

noncommunicable causes, and the prevalence of CKD has
grown with the rise of hypertension, obesity, and diabetes.2 In
the developed world, the prevalence of CKD has increased
with improvements in life expectancy.3 The implications of
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CKD include morbidity, mortality, and reduction in quality of
life at the individual level and high costs at the societal level.4

Patients with severely decreased glomerular filtration rate
(GFR) in particular are at high risk for adverse outcomes,
including kidney failure, cardiovascular disease (CVD) events,
and death.5,6 Accurate prediction of whether and when
clinical outcomes will occur in patients with severely
decreased estimated GFR (eGFR <30 ml/min per 1.73 m2,
subsequently designated stage G4þ) will help target efforts to
treat and prevent worsening of disease.

There are a few existing tools to predict the onset of kidney
failure treated with kidney replacement therapy (KRT; also
frequently referred to as end-stage kidney disease), one of the
most costly outcomes of CKD.4 Tangri et al.7 developed an
absolute risk prediction tool for patients with stages G3 to G5
CKD (eGFR <60 ml/min per 1.73 m2) in two Canadian
cohorts, and this kidney failure risk equation (KFRE) was
subsequently validated in 31 global cohorts.8 Other prediction
tools exist, but they have not undergone robust validation.9–11

None of the tools was developed specifically for a population
with stage G4þ CKD, nor do they predict other potentially
more common events, such as pre-KRT death and nonfatal
CVD events.

Using 29 cohorts of patients with stage G4þ CKD
participating in the international CKD Prognosis Con-
sortium, we simultaneously assessed the risks of KRT,
nonfatal CVD events, and death, applying competing risk,
meta-analysis with random effects models, and Markov pro-
cess methodology. The goal was to develop a 2- and 4-year
calculator to predict both the probability and the order of
clinical events according to nine demographic and clinical
characteristics.

RESULTS
Baseline characteristics
In total, there were 264,296 participants with eGFR <30
ml/min per 1.73 m2 from 29 cohorts in 30 countries for use in
model development (Table 1; Supplementary Table S1).
Twenty cohorts had data for nonfatal CVD events, KRT, and
death; and 9 had data for KRT and death only. Average age
ranged from 47 years old (Nanjing CKD, China) to 82 years old
(Parcours de Soins des Personnes Agées [PSPA], France). The
distribution of eGFR and albuminuria varied by cohort but was
often skewed toward the higher end of eGFR <30 ml/min per
1.73 m2 and the lower end of urine albumin-to-creatinine ratio
(ACR) (Supplementary Figures S1 to S2). Cause of CKD
included diabetes, hypertension, glomerulonephritis, polycy-
stic kidney disease, and interstitial nephritis but was unknown
in most of the cohorts (Supplementary Table S2).

Rates, risk factors, and adjusted absolute risk of adverse
outcomes
Overall, there were 123,985 deaths, 31,541 events of kidney
failure treated with KRT, and 70,394 CVD events identified
over a mean follow-up of 3.5 years. Events were categorized
not only by their occurrence but also by their timing relative
2

to KRT and CVD events and modeled as a function of age,
sex, race, history of CVD, current smoking status, systolic
blood pressure, diabetes mellitus, eGFR, and urine ACR
(Figure 1). Strong risk factors for developing KRT as a first
event included younger age, black race, higher systolic blood
pressure, lower eGFR, and higher urine ACR (Supplementary
Table S3). In contrast, strong risk factors for developing a
CVD event prior to KRT included older age, previous history
of CVD, and diabetes. Older age and smoking were the
strongest risk factors for death prior to KRT or CVD. There
was some quantitative heterogeneity across cohorts, but risk
associations were qualitatively consistent (Supplementary
Figures S3 and S4). The adjusted cumulative incidence of
each event over time varied across cohorts, particularly by
cohort type (Figure 2). The adjusted absolute risk of KRT as a
first event was generally highest among the CKD research
cohorts, whereas the risk of a CVD event or death prior to
KRT was highest among the administrative cohorts. Second
and third events were quantified in a similar manner
(Supplementary Table S4 and S6 and Supplementary
Figures S5 and S7).

Risk prediction model: 2- and 4-year outcomes
Risk factors and adjusted absolute risk were combined using
a Markov process and simulations to create a prediction
model for the probability and timing of clinical events and
were approximated using a multinomial model (median
R2 ¼ 0.99; Supplementary Table S7; http://ckdpcrisk.org/
lowgfrevents/). In hypothetical scenarios, the probability of
adverse events increased with longer follow-up and higher
albuminuria. For example, a 60-year-old white man with a
history of CVD, systolic blood pressure of 140 mm Hg,
eGFR of 25 ml/min per 1.73 m2, and urine ACR of 30 mg/g
but no current smoking or diabetes mellitus was predicted
to have a 74% chance of remaining event-free at 2 years,
along with a 9% chance of death and a 5% chance of KRT
(Figure 3a). In contrast, a similar scenario but for urine ACR
of 1,000 mg/g and assessment at 4 years resulted in a pre-
diction of event-free survival of 34%, with a 28% chance of
death, a 17% chance of survival with KRT, a 17% chance of
survival with CVD, and a 4% chance of both (Figure 3b).
Other scenarios that dramatically affected the probability of
adverse events included lower eGFR (higher risk of KRT),
the presence of diabetes mellitus (higher risk of CVD
events) and older age (higher risk of death) (Supplementary
Figures S8 to S13).

Comparison with the KFRE and observed risk of kidney failure
treated with KRT
We compared absolute risk projections from the developed
risk prediction model with the previously developed 2-year
and 4-variable KFRE for a set of scenarios holding constant
the overlapping risk characteristics (age, sex, eGFR, and
albuminuria) but varying others that were included only in
our model (race, systolic blood pressure, diabetes mellitus,
smoking status, and history of CVD), demonstrating good
Kidney International (2018) -, -–-
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Table 1 | Outcomes and baseline characteristics of included cohorts

Study N Death
Kidney failure

treated with KRT
CVD event

after baseline
Mean

follow-up, yr
Age,
yr

Systolic blood
pressure, mm Hg

eGFR, ml/min
per 1.73 m2

Urine ACR,
mg/g

Male
sex

Black
race

History
of CVD

Diabetes
mellitus

AASK (USA)c 622 135 286 38 4 (3) 56 (12) 135 (21) 25 (4) 130 (34, 488) 60% 100% 53% 1%
BC CKD (Canada) 9672 4717 3036 NA 5 (3) 71 (13) 137 (23) 24 (5) 225 (42, 1233) 55% 0.41% 16% 50%
CanPREDDICT (Canada)b 1739 452 435 334 3 (2) 69 (13) 134 (20) 23 (5) 188 (37, 929) 62% 1.6% 38% 52%
CCF (USA)b 9256 3000 1115 NA 2 (1) 73 (13) 130 (22) 24 (5) 51 (13, 346) 46% 17% 24% 30%
CRIB (UK)c 315 133 185 NA 6 (3) 62 (14) 152 (23) 18 (7) 589 (118, 1345) 61% 5.1% 45% 17%
CRIC (USA)c 1764 473 834 475 5 (3) 60 (11) 131 (24) 25 (4) 267 (48, 1066) 54% 45% 45% 60%
CRISIS (UK)b 1717 710 461 NA 3 (3) 66 (14) 140 (22) 20 (6) 150 (55, 466) 62% 0.64% 48% 36%
GCKD (Germany)c 504 34 33 34 2 (0) 64 (11) 140 (22) 26 (4) 130 (23, 877) 61% 0% 43% 44%
Geisinger (USA)a 19,293 10,039 1802 6292 4 (4) 73 (14) 127 (22) 24 (5) 48 (15, 232) 41% 0.99% 56% 43%
GLOMMS2 (UK)b 6384 3283 265 NA 3 (2) 79 (11) NA 25 (5) 44 (10, 189) 38% <5%e 26% 12%
Gonryo (Japan)b 729 57 354 48 2 (2) 67 (13) 135 (17) 19 (7) 666 (318, 1401) 59% 0% 27% 38%
Hong Kong CKD (China)c 502 191 270 NA 6 (3) 61 (12) 138 (19) 17 (7) 60 (21, 150) 56% 0% 27% 46%
ICES-KDT (Canada)a 79,272 42,006 9240 25,993 4 (3) 76 (13) NA 25 (5) 53 (13, 360) 43% <5%e 34% 48%
Maccabi (Israel)a 12,576 7531 1693 3480 4 (3) 76 (13) 135 (22) 25 (5) 70 (10, 301) 49% 0% 64% 46%
MASTERPLAN (Netherlands)c 437 93 142 32 4 (1) 61 (12) 138 (22) 24 (5) 185 (53, 666) 69% 0% 32% 32%
MDRD (USA)c 851 474 724 NA 14 (7) 51 (13) 134 (19) 22 (6) 335 (64, 1002) 60% 10% 17% 9%
Nanjing CKD (China)c 1584 116 1003 108 4 (3) 47 (14) 141 (22) 21 (6) 1008 (550, 1839) 54% 0% 12% 21%
NephroTest (France)c 740 213 372 NA 6 (4) 61 (14) 139 (22) 22 (6) 277 (69, 820) 67% 11% 24% 36%
NRHP-URU (Uruguay)b 2090 658 512 385 3 (2) 72 (13) 135 (22) 21 (5) 83 (0, 655) 49% 0.14% 36% 32%
NZDCS (New Zealand)b 1372 919 438 620 6 (3) 71 (12) 138 (21) 23 (6) 13 (2, 93) 43% 0.073% 47% 100%
PSP CKD (UK)b 3522 1251 141 688 2 (1) 80 (12) 131 (19) 24 (5) 48 (18, 151) 43% 0.51% 47% 30%
PSPA (France)c 573 437 294 NA 3 (2) 82 (5) 145 (22) 13 (4) 463 (174, 1015) 57% 0% 55% 39%
RCAV (USA)a 78,114 30,012 4148 21,672 3 (2) 69 (11) 125 (24) 24 (5) 38 (10, 220) 97% 21.6% 61% 58%
RENAAL (Multi)c,d 1078 234 327 400 3 (1) 60 (7) 151 (21) 26 (3) 1604 (690, 3133) 59% 12.5% 28% 100%
SCREAM (Sweden)a 18,486 12,370 1132 7882 3 (2) 70 (12) NA 25 (5) 112 (27, 787) 45% <5%e 54% 25%
SMART (Netherlands)c 137 79 31 29 6 (4) 65 (11) 152 (25) 21 (8) 187 (47, 523) 70% 0% 52% 29%
SRR CKD (Sweden)b 2555 778 770 932 3 (2) 69 (14) 142 (23) 21 (6) 211 (43, 953) 66% <5%e 33% 38%
Sunnybrook (Canada)b 1592 636 362 533 3 (2) 72 (14) 136 (22) 23 (6) 236 (62, 807) 54% 0% 17% 41%
West of Scotland CKD (UK)b 6820 2954 1136 419 5 (3) 68 (13) 143 (24) 24 (6) 151 (34, 800) 49% 0.088%e 25% 21%
Total 264,296 123,985 31,541 70,394

ACR, urine albumin-to-creatinine ratio; CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; KRT, kidney replacement therapy; N, number of participants; NA, not available.
Numbers are means (SD) or medians (1st quartile, 3rd quartile).
aAdministrative cohort (general population cohort from a clinical or health system database; covariates and outcomes generally from International Classification of Diseases codes).
bReferred CKD cohort (similar design to Administrative but restricted to patients under the care of a nephrologist or in a CKD registry).
cCKD research cohort (designed as a research study with planned study visits and active outcome ascertainment; patients may be similar to those in the referred CKD type).
dRENAAL contains participants from 28 countries: Argentina, Austria, Brazil, Canada, Chile, China, Costa Rica, Czech Republic, Denmark, France, Germany, Hungary, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, New Zealand,
Peru, Portugal, Russia, Singapore, Spain, Slovakia, United Kingdom, United States, and Venezuela.
eSee analytic notes in Appendix S1 for the cohort in regards to the race variable.
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Figure 1 | Diagram of states and transitions included in the 5-state Markov model. States are shown in gray ovals and include chronic
kidney disease (CKD) stage G4þ, cardiovascular disease (CVD), kidney replacement therapy (KRT) without CVD, KRT and CVD, and death. The
state transition probabilities are denoted by P1 through P8, where P is a function of age, x (a vector of covariates), and time. This vector includes
baseline sex, race, history of CVD, current smoking, systolic blood pressure, diabetes status, albuminuria (P1 to P4 and P6), estimated glomerular
filtration rate (baseline for P1 to P3, time updated for P4 and P6), and transplantation status (for P5, P7, and P8). The probabilities of remaining in a
state are denoted by P0, and P9 to P11.
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agreement (within-cohort R2 ranging from 0.89 to 0.97;
median within-study C statistic of 0.814 (range, 0.680 to
0.972) and 0.817 (range, 0.666 to 0.929), respectively
(Supplementary Figures S14 to S19). Calibration to observed
risk using clinically relevant categories was also good for both
the developed risk prediction model as well as the KFRE
(Supplementary Figure S20). Within cohorts, the prevalence
of 2-year predicted KRT risk of >40% (potentially an
actionable threshold) was approximately 10% in most co-
horts, by using the KFRE and slightly higher by using our
Markov model; but many participants had >50% predicted
probability of remaining event-free at 4 years (Supplementary
Figures S21 and S22).

Alternative risk prediction model: assessment of variation by
cohort type
Alternate versions of the risk model that incorporated adjusted
absolute risk estimates from the 3 types of cohort (CKD
research, administrative, and referred CKD) showed an
approximately 2-fold variation in the predicted risk of clinical
events between models (Supplementary Figure S23; Figure 4).
The predicted probability of KRTwas higher and probability of
death was lower in the CKD research cohort-based prediction
model than in the overall prediction model; the opposite was
true in the administrative cohort-based prediction model
(Supplementary Figures S24 to S26). Variation in adjusted
absolute risk over time was less consistent by region or cause of
disease (Supplementary Figures S27 and S28).

Alternative risk prediction model: three-state Markov model
In sensitivity analysis, we compared the predicted probability
of KRT and death from the 5-state Markov model derived
from data from the 20 cohorts with all 3 outcomes to the
predicted probability of KRTand death from a 3-state Markov
model (CKD G4þ, KRT, and death) derived from data from
all 29 cohorts with available KRT and death (Supplementary
4

Figure S29). Risk projections were similar (Supplementary
Figure S30).

DISCUSSION
In this global consortium of 264,296 patients with eGFR
of <30 ml/min per 1.73 m2, we developed and tested a model
to predict the absolute risk and relative order of KRT, nonfatal
CVD events, and death in 2- and 4-year periods. The risk
calculator has been made publicly available (http://ckdpcrisk.
org/lowgfrevents/) and may aid in patient counseling,
including referral recommendations for transplantation or
vascular access surgery. With the caveat that many of our
cohorts represent incident stage G4þ CKD patients, we found
that occurrence of events (KRT, nonfatal CVD events, or
death) was not uniformly high, with nearly 50% of the par-
ticipants expected to be event-free at the end of 4 years.

Our study provides evidence that clinical characteristics at
eGFR of <30 ml/min per 1.73m2 have strong relationships
with subsequent events, even in individuals with severely
decreased GFR.12 Both lower eGFR and higher albuminuria
were strong risk factors for kidney failure treated with KRT.
However, the absolute risks varied substantially according to
age, with the predicted 4-year risk of KRT declining from
33% in a 35-year-old patient to 5% in an 85-year-old patient
in a scenario with baseline eGFR of 25 ml/min per 1.73 m2

and urine ACR of 100 mg/g. Not surprisingly, a history of
CVD was an exceptionally strong risk factor for the occur-
rence of a CVD event among patients with stage G4þ CKD,
supporting the potential importance of cardiovascular risk
factor reduction in these patients despite their advanced
kidney disease. Interestingly, in the included cohorts, many of
the participants were predicted to remain event-free in the
subsequent four years. This may be in part due to selection:
there was a significant subset of participants with relatively
low albuminuria, which may or may not be generalizable to
the greater population.
Kidney International (2018) -, -–-
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Figure 2 | Adjusted* cumulative incidence of (a) kidney failure requiring kidney replacement therapy, (b) cardiovascular event, and (c)
death as first event from Markov model. Color coding of the lines is described in (d). The black bold line indicates the equal weighted mean.
*Adjusted to 60 years of age, half male, nonblack, half history of cardiovascular disease, half smoker, systolic blood pressure 140 mm Hg, half
diabetes, estimated glomerular filtration rate 25 ml/min per 1.73 m2 and urine albumin-to-creatinine ratio 100 mg/g. Gray shaded cohorts (d)
did not have cardiovascular events and were not included in panels a to c. CKD, chronic kidney disease. Study acronyms and abbreviations are
listed in Appendix S2.
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A well-validated risk equation for kidney failure requiring
KRT in stage G3þ CKD already exists.7,8 Our study adds to
the published findings by simultaneously accounting for and
estimating rates of competing events, particularly death. We
confirm the accuracy of the KFRE in a population with lower
GFR than the cohorts in which it was originally developed
and validated, and we compared the KFRE to our own model,
finding similar results. We suggest that health providers and
systems use the KFRE in persons with GFR of <60 ml/min
per 1.73 m2, in whom kidney failure treated with KRT is the
primary event of interest and when a limited number of
covariates are available. For patients with eGFR of <30
Kidney International (2018) -, -–-
ml/min per 1.73 m2 in whom there is interest in incident
CVD events or death or the sequence of such events in
relation to KRT, we suggest our newly developed equation,
which uses additional covariates to produce a more refined
estimate.

Strengths of our study include a large number of patients
with stage G4þ CKD from a broad range of countries. Models
were developed and rigorously tested with many different
sensitivity analyses. Prediction tools incorporated 9 different
clinical and demographic variables and explained approxi-
mately 40-fold of the variation in explained risk, but there
remained approximately 5-fold variation between cohorts
5



Figure 3 | Probability and timing of clinical events at 2 and 4 years with increasing level of albuminuria. (a) Two years and urine albumin-
to-creatinine ratio (ACR) of 30 mg/g; (b) 4 years and urine ACR of 1000 mg/g. In these models, the scenario was set at 60 years of age, male,
white, history of CVD, not a current smoker, systolic blood pressure of 140 mm Hg, no diabetes, and an estimated glomerular filtration rate of 25
ml/min per 1.73 m2. ESRD, end-stage renal disease; KRT, kidney replacement therapy.
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that was unexplained. Type of cohort did seem to be an
important contributor in risk variation, with research cohorts
having markedly higher KRT risk than others, even adjusted
for baseline covariates. In those cohorts for which we had
data, cause of CKD was not a major contributor to variation
between cohorts. Although region has previously been found
to play an important role in KRT risk, we did not see
consistent differences between North America and non-North
American regions, perhaps due to the relatively small number
of cohorts from each region.8 We had limited data with which
to evaluate whether differences in therapeutic interventions
such as renin-angiotensin system inhibition or statin use
might partially explain variation across cohorts.13

As with all models, there were certain assumptions. Rela-
tive risks were modeled as constant over time. The cumulative
6

incidence of competing events was scaled to the cumulative
incidence of the composite event derived from Cox regres-
sion. Initiation of KRT, which we and others used as an
operational definition for the major adverse kidney disease
endpoint, is a treatment decision which may be influenced by
factors other than kidney function. For example, our obser-
vation of older age conferring lower risk for KRTmay reflect
preferences for conservative care rather than a slower pro-
gression of CKD or fewer symptoms. Fatal CVD events were
simply counted as death, and not CVD.

In conclusion, our model predicts the occurrence and
order of nonfatal CVD events, kidney failure treated with
KRT, and death in patients with eGFR of <30 ml/min per
1.73 m2, based on parameters that are readily available in
routine clinical practice. This tool may be a useful supplement
Kidney International (2018) -, -–-



Figure 4 | Markov model predicted 2-year survival without
kidney failure treated with kidney replacement therapy or
cardiovascular events for a range of scenarios (varying systolic
blood pressure, race, diabetes, history of cardiovascular disease,
and smoking status) for a 60-year-old man, comparing estimates
using overall mean with cohort type-specific means for the
baseline hazards and subhazards. ACR, urine albumin-to-creatinine
ratio; CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate.
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to existing risk calculators when refined estimates that take
into account competing events and patterns of events are
required. Additional work is needed to further characterize
sources of unexplained variation between cohorts, with the
ultimate goal of identifying treatment strategies and practice
patterns that can prevent or forestall adverse outcomes in
patients with severely decreased GFR.

METHODS
Study population
Cohorts were identified from the CKD Prognosis Consortium
(CKD-PC) as well as through an open call by the Kidney Disease:
Improving Global Outcomes (KDIGO) entity. The CKD-PC has
been described previously and in more detail in Appendices S1
and S2.14–17 Cohorts were considered eligible for the current study
if they contained at least 500 patients with eGFR <30 ml/min per
1.73 m2, data for albuminuria, and at least 50 events each of kidney
failure requiring KRT and death. There were 29 cohorts included in
analyses using a 3-state Markov model, and 20 cohorts using a 5-
state Markov model. Thirteen cohorts were classified as CKD
research cohorts (designed as a research study with planned study
visits and active outcome ascertainment), 5 were classified as
administrative cohorts (captured from a clinical or health system
database covering an entire patient population), and 11 were clas-
sified as referred CKD cohorts (similar design as the administrative
cohorts, but restricted to patients under the care of a nephrologist or
in a CKD registry). This study was approved by the institutional
review board at the Johns Hopkins Bloomberg School of Public
Health (Baltimore, Maryland).

Covariates and outcomes
Serum creatinine was standardized to isotope dilution mass spec-
trometry and converted to eGFR, using the CKD-EPI 2009 creatinine
equation.18 Measurements of albuminuria included the urine
albumin-to-creatinine ratio, urine albumin excretion rate, and urine
Kidney International (2018) -, -–-
protein-to-creatinine ratio, with conversion to ACR as needed.7 In
analyses, urine ACR was log-transformed and scaled to ln(10), so
that coefficients were interpreted reflecting differences per 10-fold
higher ACR. Diabetes was defined by individual cohorts as fasting
glucose $7.0 mmol/l (126 mg/dl), nonfasting glucose $11.1 mmol/l
(200 mg/dl), hemoglobin A1c $6.5%, use of glucose-lowering drugs,
or self-reported diabetes. History of CVD was defined as a history of
myocardial infarction, coronary revascularization, heart failure, or
stroke. Smoking was categorized as current smoker versus former or
never-smoker. Systolic blood pressure was reported by the cohorts
and treated as a linear spline in regression models, with a knot at 140
mm Hg. Cause of disease was classified by individual cohorts.
Outcomes included KRT, cardiovascular events, and death, and were
defined using cohort-specific definitions (Appendix S1). Missing
covariates (except for age, sex, race, and eGFR) were estimated using
multiple imputation chained equations.19–21

Competing risk analyses
The associations between baseline covariates and first outcome were
determined using competing risk regression, using the method of
Fine and Gray, and treating first KRT, first nonfatal CVD event, and
pre-KRT, precardiovascular death as competing events.22 This was
repeated for all participants who reached KRT first, treating post-
KRT CVD events and death as competing events, and for all par-
ticipants who had a CVD event first, treating post-CVD event KRT
and death as competing events. Only the first nonfatal CVD event
after the onset of eGFR <30 ml/min per 1.73 m2 was captured. At
each step, a composite endpoint was also evaluated in the same
manner using Cox regression. For the first event, the composite
endpoint consisted of first KRT, first CVD event or death pre-KRT
and pre-CVD event. For the second event after KRT, the compos-
ite endpoint consisted of post-KRT CVD events or post-KRT death.
For the second event after a CVD event, the composite endpoint
consisted of post-CVD event KRT or post-CVD event death. For the
outcome of death after a participant had developed both KRT and a
CVD event, Cox regression was used to estimate associations, as
there was no competing event.

Meta-analysis and estimation of baseline subhazards
Fine and Gray subhazard ratios derived in each cohort were pooled
using random effects meta-analysis. Heterogeneity was evaluated us-
ing forest plots and I2 statistics.23–25 Cohort-specific adjusted baseline
subhazards were estimated in each cohort by using competing risk
regression, holding subhazard ratios constant and equal to the meta-
analyzed subhazard ratios but allowing the baseline subhazard to
vary between cohorts. The baseline subhazards were then used to
calculate the adjusted cumulative incidence of each event over time.
Baseline subhazards (i.e., the adjusted absolute risk over time) were
displayed graphically to evaluate heterogeneity and summarized as the
equally weighted mean over cohorts and, for cohort type-specific
analysis, the equally weighted mean within cohort type. Note that,
for the composite endpoints as well as event of death after KRTand a
CVD event (where there is no competing event), Cox regression and
baseline hazards were used, but the procedure was otherwise the same.
AWeibull model was then fitted on the equal-weighted mean adjusted
subhazard (or hazard) in order to allow a smooth, parametric estimate
for use in the Markov process.

Markov process and simulations of absolute risks
The combination of parameters from the Weibull model and the
meta-analyzed subhazard ratios were used to predict time-varying
7
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state transition probabilities (e.g., the probability of moving from
stage G4þ to first KRT) for a given set of baseline covariates (age,
sex, race, history of CVD, smoking status, diabetes mellitus,
systolic blood pressure, eGFR, and urine ACR). In order to ensure
that the probabilities for each state summed to 1, we scaled the
cumulative probability of the events (for the first state transition,
first KRT, first CVD event, and first death) to the cumulative
probability of a composite endpoint ascertained using Cox pro-
portional hazards model, as done previously.26 These state tran-
sition probabilities thus varied by time, age, and baseline
covariates and were incorporated in a heterogeneous Markov
process, using a cycle length of 1 month and time horizons of 2-
and 4-years. Outcomes were estimated using 10,000 simulations
for each scenario, where a scenario corresponded to a set of
covariates. In other words, each iteration corresponded to 1 hy-
pothetical person with the given set of covariates, and variation in
the results of the iteration represented the stochastic natures in
which persons traversed the Markov model. In order to assess the
sensitivity of risk prediction to cohort type, we repeated the
procedures using cohort-type-specific parameters for the baseline
subhazards. We also repeated analyses in a 3-state model (CKD
stage G4þ, KRT, and death) (Supplementary Figure S29) to
compare the results. To evaluate sources of unexplained variation,
we examined the distribution of cumulative incidence of events
by type of cohort, region, and prevalence of different causes of
CKD.

Development of a web calculator
In order to implement the Markov process as a Web tool, we
developed an estimating equation on simulated estimates for 3,702
baseline scenarios (every combination of age [35, 45, 55, 60, 65, 75,
80, and 85 years of age], sex, race [black and nonblack], diabetes
status, history of CVD status, smoking status [current smoker and
never- or former smoker], systolic blood pressure [180 and 140
mm Hg], eGFR [15 and 25 ml/min per 1.73 m2], and ACR [30, 100,
and 1,000 mg/g]). To do this, we fitted multinomial models and
weighted them by the inverse probability of each outcome from
simulations (e.g., KRT only, CVD only, death only; KRT followed by
CVD, CVD followed by KRT, and so forth). Multinomial models
incorporated all the available covariates and two-way interactions
significant for any of the outcomes. Calibration of the multinomial
model to the simulated outcomes was assessed using R2 and root-
mean-squared errors for each outcome. Functional forms of cova-
riates were the same as those used in the competing risk regression.
For the purposes of this manuscript, predicted probabilities in the
figures and text stem from the multinomial model.

Comparison of our developed risk model with the KFRE and
observed risk
We compared absolute risk estimates of the probability of KRT from
our newly developed risk model to that calculated in the absence of
competing events using the previously published KFRE.7,8 To do this,
we held shared variables constant (age, sex, eGFR, and ACR) and
varied the covariates unique to our model (race, systolic blood
pressure, diabetes mellitus, smoking status, and history of CVD), and
we assessed R2 within cohorts. We also compared risk predictions
from our developed risk model as well as the KFRE to observed KRT
risk. To do this, we divided predicted risk categories into<20%, 20%
to 40%, >40% probability of KRT in the subsequent 2 years (clin-
ically meaningful thresholds), using our developed risk model and
the KFRE, and then we plotted the mean risk estimate against the
8

observed risk within each category by cohort. Discrimination was
assessed using the C statistic. All analyses were done using Stata 14
MP software (College Station, TX).
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Figure S4. Forest plot of the subhazard ratio associated with 10-fold
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Figure S5. Adjusted* cumulative incidence of (A) CVD after first KRT
and (B) death after first KRT from Markov model. Color coding of the
lines is described in (C).
Figure S6. Adjusted* cumulative incidence of (A) KRT after first
nonfatal CVD and (B) death after first nonfatal CVD from Markov
model. Color coding of the lines is described in (C).
Figure S7. Adjusted* cumulative incidence of (A) death after having
experienced both KRT and CVD from Markov model. Color coding of
the lines is described in (B).
Figure S8. The probability and timing of clinical outcomes at 2 and 4
years with increasing level of ACR.
Figure S9. The probability and timing of clinical outcomes at 4 years,
varied by diabetes status.
Figure S10. The probability and timing of clinical outcomes at 4
years, varied by SBP level.
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years, varied by history of CVD.
Figure S12. The probability and timing of clinical outcomes at 4
years, varied by age.
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years, with further subdivision by age.
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scenarios for an 85-year old man (A) or woman (B).
Figure S20. Calibration of the predicted versus observed 2-year risk
of KRT for the (A) kidney failure risk equation (KFRE) and (B) MCMC
model.
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Figure S21. Prevalence of 2-year predicted KRT risk for the (A) kidney
failure risk equation (KFRE) and (B) MCMC model.
Figure S22. Distribution of 4-year event free survival.
Figure S23. Equal-weighted mean of the adjusted cumulative inci-
dence curves for first KRT (A), first CVD (B), and death as a first event
(C) within the three types of cohort (CKD research, administrative, and
referred CKD).
Figure S24. The probability and timing of clinical outcomes at 4 years
overall and by type of cohort.
Figure S25. The probability and timing of clinical outcomes at 4 years
overall and by type of cohort.
Figure S26. The probability and timing of clinical outcomes at 4 years
overall and by type of cohort.
Figure S27. Cumulative incidence of first KRT (A), first CVD (B), and
death as a first event (C) by region.
Figure S28. Adjusted absolute risk of KRT by cause of CKD in cohorts
with available data (Supplementary Table S2).
Figure S29. Diagram of states and transitions included in the 3-state
Markov model.
Figure S30. Absolute KRT (A) or death (B) risk projections at 2-years
for a set of scenarios for a 60-year old man from a 5-state Markov
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Supplementary material is linked to the online version of the paper at
www.kidney-international.org.
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