Arterial Pressure in CKD5 - ESRD Population

Gérard M. London

INSERM U970

Paris

SBP & DBP by Age, Ethnicity &Gender (US Population ≥Age 18 Years, NHANES III)

Evolution of Untreated Systolic and Diastolic BP: The Framingham Heart Study. Adapted from Franklin et al. *Circulation* 1997;96:308.

→ ≥160
140-159
120-139
<120</p>

Distribution of Hypertension Subtype in the untreated Hypertensive Population in NHANES III by Age

Numbers at top of bars represent the overall percentage distribution of untreated hypertension by age. Franklin et al. *Hypertension 2001;37: 869-874*.

Difference Between SBP and DBP in CHD Prediction, as a Function of Age

Hypertension Control by Age Group

Cross-sectional analysis among 1189 treated hypertensive subjects from Framingham Lloyd-Jones Hypertension 2000;36:594

Steep Rise in Pulse Pressure With Increasing Age Data From the Framingham Study

n=2036

Franklin SS et al. Circulation 1997;96:308-315.

Relationship of SBP and DBP to risk for CHD in a dual component model: The Framingham Heart Study

Mean age = 61 years (range: 50-79), n = 1924

Cardiovascular Risk Associated with Increasing SBP at Fixed Values of DBP

Two-year risk adjusted for active treatment, sex, age, previous CV complications, and smoking by multiple Staessen, et al. *Lancet.* 2000;355:865–872. Cox regression.

Blood Pressure and CHD Risk						
Dual BP Component Models						
	Chi Sq.	Hazard Ratio	P Value			
Model 1						
SBP	35.6	1.22 (1.15-1.30)	< 0.001			
DBP	5.2	0.86 (0.75-0.98)	< 0.05			
Model 2						
DBP	0.7	1.04 (0.94-1.16)	NS			
PP	35.6	1.22 (1.15-1.30)	< 0.001			

Hazards per 10 mm Hg increment

Adjusted for age, sex, smoking, ECG-LVH, BMI, glucose intolerance, total/HDL cholesterol

Franklin et al. Circulation 1999;100:354

Blood Pressure and Risk for CHD by Age Groups: Results of a <u>Single BP</u> Component[†] Model

† Adjusted for age, sex, and other risk factors *P<0.1, **P<0.01, ***P<0.001 Franklin SS, et al. Circulation 2001;103:1245-1249.

Evolution of Systolic and Diastolic BP in CKD patients

Figure 1. Systolic and diastolic BP versus age in the DCI and NHANES populations.

Rohrscheib MP et al CJASN 2008;3:1407

Figure 2. MAP and PP versus age in the DCI and NHANES populations.

Rohrscheib MP et al CJASN 2008;3:1407

·	Study Population			
Variable	All	Complete Follow-up	Partial Follow-up	Excluded
Total number of patients	37 069	31 176	5893	7000
Sex, % Men	51.3	51.0	52.8	51.9
Women	48.7	49.0	47.2	48.1
Age, y	60.1 (15.1)	60.5 (14.8)	58.0 (16.3)	60.3 (15.6)
Race, % White	49.9	48.5	56.9	53.2
Black	43.4	44.6	36.9	38.4
Asian	1.1	1.3	1.5	1.1
Native American	0.7	0.7	0.7	0.5
Other	4.9	4.7	4.0	6.8
Diabetes mellitus, % Present	47.9	48.1	46.9	46.6
Absent	52.1	51.9	53.1	53.4
Duration of dialysis prior to study entry, y	3.4 (3.6)	3.5 (3.7)	2.8 (3.2)	3.7 (3.9)
Laboratory measurements Creatinine, mg/dL†	9.6 (3.3)	9.6 (3.2)	9.5 (3.5)	9.4 (3.4)
Albumin, g/dL	3.9 (0.4)	3.9 (0.4)	3.8 (0.4)	3.8 (0.4)
Hematocrit, %	33.3 (3.3)	33.3 (3.3)	33.1 (3.4)	33.0 (3.4)
Urea reduction ratio, %	68.7 (7.4)	68.8 (7.3)	67.8 (7.9)	68.1 (7.8)
Predialysis pressure, mm Hg Systolic	154.3 (20.4)	154.4 (20.4)	153.9 (20.4)	152.7 (19.8)
Diastolic	79.3 (11.2)	79.2 (11.1)	79.8 (11.3)	79.5 (10.9)
Pulse	75.0 (15.0)	75.2 (15.0)	74.1 (15.0)	73.2 (14.4)
Postdialysis pressure, mm Hg Systolic	139.6 (19.1)	139.5 (19.0)	140.2 (19.3)	140.0 (18.4)
Diastolic	72.7 (10.1)	72.6 (10.1)	73.5 (10.3)	73.9 (10.1)
Pulse	66.9 (13.9)	66.9 (13.8)	66.8 (14.2)	66.1 (13.4)

Table 1. Description of Clinical Cohort*

Klassen PS et a l. JAMA 2002;287:1548-55. n=37069

	Dippers $(n=24)$	Non-dippers $(n = 56)$	P-value
Age (years)	63 ± 11	59 ± 10	0.51
Sex (males/females)	14/10	26/30	0.28
Duration of HD (years)	4.2 ± 3.6	5.4 ± 5.3	0.08
Diabetes [n (%)]	10 (42)	21 (37)	0.57
Hypertentives $[n (\%)]$	12 (50)	31 (55)	0.84
Current smokers $[n (\%)]$	11 (46)	20 (35)	0.55
Duration of follow-up (years)	3.4 ± 1.8	2.5 ± 1.4	0.02
Ambulatory BP (mmHg)			
Diurnal SBP	160 ± 22	158 ± 21	0.52
Diurnal DBP	83 ± 14	81 ± 12	0.51
Nocturnal SBP	136 ± 21	164 ± 24	< 0.0001
Nocturnal DBP	75 ± 12	82 ± 11	0.01
24 h mean SBP	151 ± 19	159 ± 19	0.09
24 h mean DBP	81 ± 10	82 ± 10	0.93
Predialytic/clinic BP (mmHg)	_	—	
SBP	163 ± 21	166 ± 25	0.61
DBP	86 ± 13	88 ± 13	0.58
Pulse pressure	76 ± 19	77 ± 21	0.87

Table 1. Clinical characteristics of dippers and non-dippers

Liu M et al. NDT 2003; 18:563

Categories of Pulse Pressure (mmHg)

Klassen et al. JAMA 2002;287:1548-1555

Brachial Pulse Pressure and Cardiovascular mortality in ESRD patients

Safar ME et al Hypertension 2002

Common Carotid Pulse Pressure and Cardiovascular mortality in ESRD patients

Safar ME et al Hypertension 2002

1-year Mortality predicted by SBP Experience at 782 US dialysis facilities

Klassen et al. JAMA 2002;287:1548-1555

1-year Mortality predicted by DBP Experience at 782 US dialysis facilities

Klassen et al. JAMA 2002;287:1548-1555

Survival curves in hemodialysis patients for each baseline level of diastolic BP

ISEKI K. et al. Kidney Int 1997

Association between BP and 15-month CV death in 40 933 MHD patients (95% confidence interval bars are depicted). Note that the unadjusted models also include entry quarter. **MICS-adjusted models also include all covariates in the previous models.

Hypertension 2005;45:811

Adjusted Cox Z-value –2.23; p=0.02 0.992 (0.988-0.991) for 1 mmHg increase

Fouque D et al Observatoire National

All cause mortality according Diastolic blood pressure (PAd)

Adjusted Cox: Z-value = -6.73; p<0.001 0.977 (0.971-0.984) for 1 mmHg increase

Fouque D. et al Observatoire National

Correlation between arterial pulse pressure, wave reflexion (Augmentation index) aortic pulse wave velocity and stroke volume (n=230)

Relationship of Resistance ®, Compliance (C) and Stiffness (S=1/C)with diastolic pressure decay

Adapted from Simon et al. Am J Physiol 1979

London et al Kidney Int 1989

Diagrammatic representation of pressure-volume relationships

Volume

ROC Curves of CVdeath

Pannier B et al Hypertension 2005

Correlation between Age and Aortic Pulse Wave Velocity in General population (•) and ESRD patients (•)

Pannier et al Artery 2007;1:78-89

Age related changes in arterial internal diameters

Age related changes in Carotid IMTh

Pannier et al Hypertension 2005

Probability of overall survival in hemodialysis patients according to aortic PWV

Duration of follow-up (months)

Blacher et al. Circulation. 1999

All cause survival according to changes in a ortic pulse wave velocity (Δ PWV) in response to BP decrease

Guérin et al. Circulation. 2001.

Changes of mean blood pressure and aortic PWV

Survivors

Non Survivors

Guérin and al. circulation 2001 ; 103 : 987 - 92

ROC Curve of CV mortality

 $PWV^2 = Einc x$ arterial IMT/arterial radius wher Einc is incremental elastic modulus

London et al. Cur Op hypertens Nephrol 2006

Schematic representation of reactive hyperemic response in the human forearm after five minutes of ischemia

Pannier B et al. Kidney Int 2001

Probability of survival in ESRD patients according to postischemic forearm flow debt repayement (FDR)

London GM et al. Kidney Int 2003

Methods of stimulating increased blood flow

Mullen, M. J. et al. Circ Res 2001;88:145-151

Echotracking is 3 to 10 x more precise than image based techniques

2 D TM

Spatial resolution

200-400 μm

RF Signal

20-40 µm

Graphs show FMD, GTN-induced dilation, and RH in normotensive subjects (white circles and bars) and in patients with essential hypertension (black circles and bars)

Ghiadoni, L. et al. Hypertension 2003;41:1281-1286

Traub, O. et al. Arterioscler Thromb Vasc Biol 1998;18:677-685

Endothelial cell biology and shear stress

Brachial artery characteristics

	Controls	ESRD	
Baseline BA diameter (mm)	4.12±0.13	4.56± 0.11	< 0.01
BA complian(m ² .kPā ¹ .10 ⁷)	0.45± 0.02	0.37 ± 0.02	< 0.01
BA distensibil(ty Pā ¹ .10 ³)	3.5±0.22	2.6±0.19	< 0.001
BA incremental elastic modulus (kPa	.108.0±0.22	5.0 ± 0.42	< 0.001
BAcircumferential wall stress (kPa)	60 ± 2.5	65±1.9	NS
Baseline mean flow velocity (cm/s)	4.6±0.40	3.4 ± 0.30	< 0.01
Baseline mean flow (ml/min)	39±4.6	33±3.6	NS
Baseline mean SR (s-1)	53±2.9	39±3.5	< 0.01
Baseline peak SR (s- ¹)	365±23	324±26	< 0.05
Whole blood viscosity (cPoise)	3.57±0.07	2.79±0.06	< 0.0001
Baseline mean SS (dynes/cm ²)	19±1.15	10.7±1.0	< 0.001
Baseline peak SS (dynes/cm²)	129± 9	83±5	< 0.001

Verbeke et al JASN 2007

Relationship in Controls and ESRD patients between brachial artery (BA) diameter and compliance and BA shear stress

Verbeke et al . JASN 2007

