Heart Failure

Peter A. McCullough, MD, MPH, FACC, FACP, FAHA, FCCP Consultant Cardiologist, Chief Academic and Scientific Officer St. John Providence Health System Providence Park Heart Institute Novi, MI USA e-mail: peteramccullough@gmail.com

Outline

- Definitions
- Complex, bidirectional pathogenesis
- Example of novel target
- Therapy
- Putting it all together

Outline

Definitions

Complex, bidirectional pathogenesis

Example of novel target

Therapy

Putting it all together

Definition of Heart Failure (HF)

- The failure of the heart as a pump resulting in inadequate cardiac output to peripheral tissues and stasis of blood in the lungs resulting most commonly in fatigue and pulmonary congestion.
- A complex mechanical and neurohumoral syndrome characterized by effort intolerance, fluid retention, and reduced longevity.
- At least 7 definitions in the literature based on tested scoring schemes and expert opinion.

Heart Failure as a Clinical Clinical press Syndrome kidney injury

Stasis of blood, tissue deposition of water and salt resulting in effort intolerance, progressive dyspnea, fatigue, edema

Definition and Classification of the Cardio-Renal Syndromes

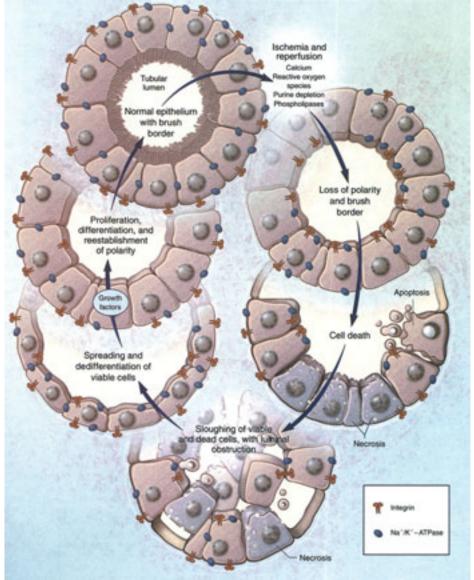
Cardio-Renal Syndromes (CRS) General Definition:

Disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other

Acute Cardio-Renal Syndrome (Type 1) Acute worsening of cardiac function leading to renal dysfunction Chronic Cardio-Renal Syndrome (Type 2) Chronic abnormalities in cardiac function leading to renal dysfunction Acute Reno-Cardiac Syndrome (Type 3) Acute worsening of renal function causing cardiac dysfunction Chronic Reno-Cardiac Syndrome (Type 4) Chronic abnormalities in renal function leading to cardiac disease Secondary Cardio-Renal Syndromes (Type 5) Systemic conditions causing simultaneous dysfunction of the heart and kidney

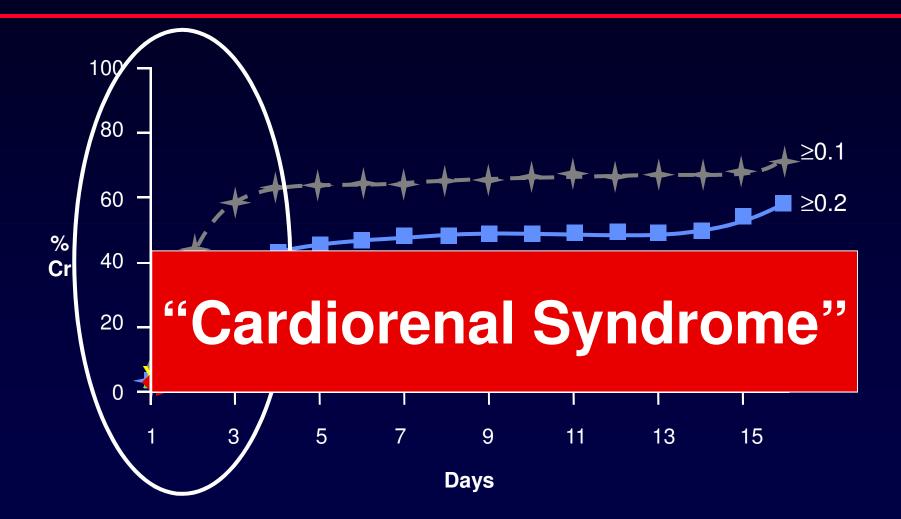
Ronco, et al, JACC 2008

Long-term Risk of Mortality and Other Adverse Outcomes After Acute Kidney Injury: A Systematic Review and Meta-analysis


Steven G. Coca, DO,^{1,2} Bushra Yusuf, MD,^{1,2} Michael G. Shlipak, MD, MPH,^{3,4} Amit X. Garg, MD, PhD,⁵ and Chirag R. Parikh, MD, PhD^{1,2}

Outcomes after an Episode of AKI (n=47,017)New CKD7.8 events/100 patient-yearsESRD4.9 events/100 patient-yearsMortality8.9 deaths/100 patient-years

		Deaths/Person-Years (deaths/100 person-years)		No. of Studies Showing Harm			
Subgroup	No. of Studies	AKI	No AKI	Point Estimate > 1	Lower Bound 95% CI > 1	Rate Ratio	Heterogeneity (I ²)
Overall	15	685/7,665 (8.9)	3,739/87,014 (4.3)	15	12	2.59 (1.97-3.42)	86%
Definition of AKI						, ,	
At least mild	3	250/3,972 (6.3)	340/9,908 (3.4)	3	3	1.67 (1.41-1.98)	0%
At least moderate	6	325/2,928 (11.1)	2,980/67,488 (4.4)	6	4	2.73 (1.81-4.14)	90%
Severe (RRT)	7	148/1,079 (13.7)	590/13,351 (4.4)	7	6	3.04 (2.13-4.33)	60%
Clinical setting							
Critical illness	2	48/347 (13.8)	173/3,743 (4.6)	2	1	2.41 (1.50-3.85)	0%
Cardiac surgery	3	97/1,335 (7.3)	327/11,956 (2.7)	3	3	3.72 (1.49-6.94)	85%
PCI	4	218/1,670 (13.1)	2,793/66,350 (4.2)	4	4	2.89 (2.32-3.61)	49%
Nonrenal transplant	3	92/1,632 (5.6)	204/2,884 (7.1)	3	1	1.89 (0.9-3.96)	82%
Left ventricular assist device	2	59/581 (10.2)	79/1,582 (5.0)	2	2	2.15 (1.53-3.03)	0%
Aortic surgery	1	171/3,840 (4.5)	163/5,290 (3.1)	1	1	1.45 (1.17-1.79)	NA
Duration							
Transient v none	2	201/2,298 (8.7)	301/9,645 (3.1)	2	2	2.54 (2.10-3.06)	0%
Persistent v none	2	124/1,370 (9.1)	301/9,645 (3.1)	2	2	2.46 (1.68-3.60)	49%
Persistent v transient	3	186/2,150 (8.7)	232/2,923 (7.9)	2	1	1.15 (0.84-1.57)	45%
	Amorioor	lournal of Kid	Diagona V		0000. 00.00	1 070	


American Journal of Kidney Diseases, Vol 53, No 6 (June), 2009: pp 961-973

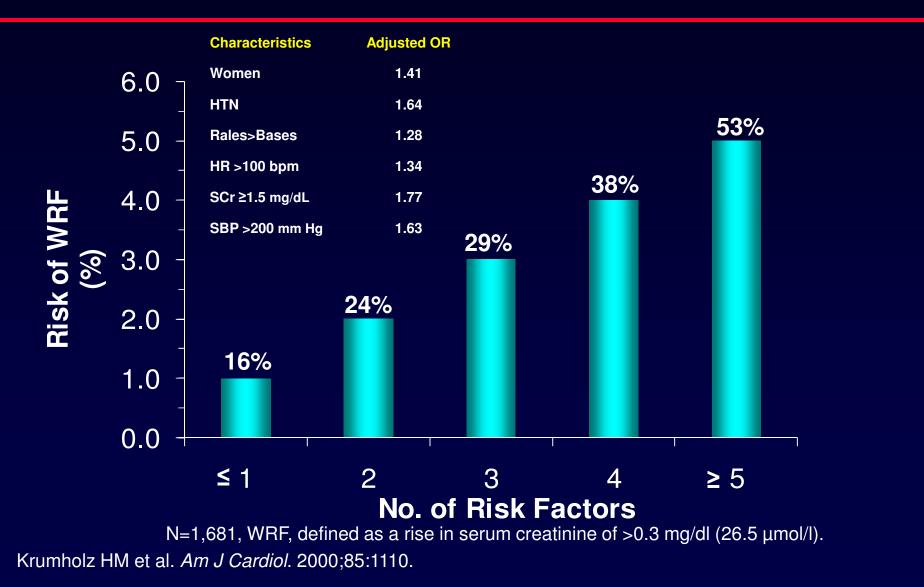
Tubular Injury in AKI

Thadhani et al., N Engl J Med 1996

Time Course of Development of Increasing Creatinine in Hospitalized HF Patients

Cr, serum creatinine. Gottlieb SS et al. *J Card Fail.* 2002;8:136. Smith G, J Card Fail. 2003 Feb;9(1):13-25

CHF: Worsened Renal Function in Hospital


27% of 1,004 pts had worsened renal function (>0.3mg/dl)

	Hazard Ratio	
History of CHF (1)	1.3 (1.01-1.7)	
Diabetes (1)	1.4 (1.1-1.8)	Score = 0 – 10% risk
SBP> 160 (1)	1.4 (1.1-1.7)	Score = 4 – 53% risk
1.5 <creat<2.5 (2)<="" td=""><td>2.1 (1.6-2.8)</td><td></td></creat<2.5>	2.1 (1.6-2.8)	
Creat = 2.5 (3)	3.5 (2.5-4.8)	

52% of WRF develops by day 3 and results in: 7X increase in risk of death 3X increase in length of stay 2X increase in complications No relation to hypotension or hypovolemia

Krumholz. JACC 2004;43:61

Risk of Worsening Renal Function (WRF) by Number of Risk Factors

Impact of Major In-hospital Complications: POSH Study

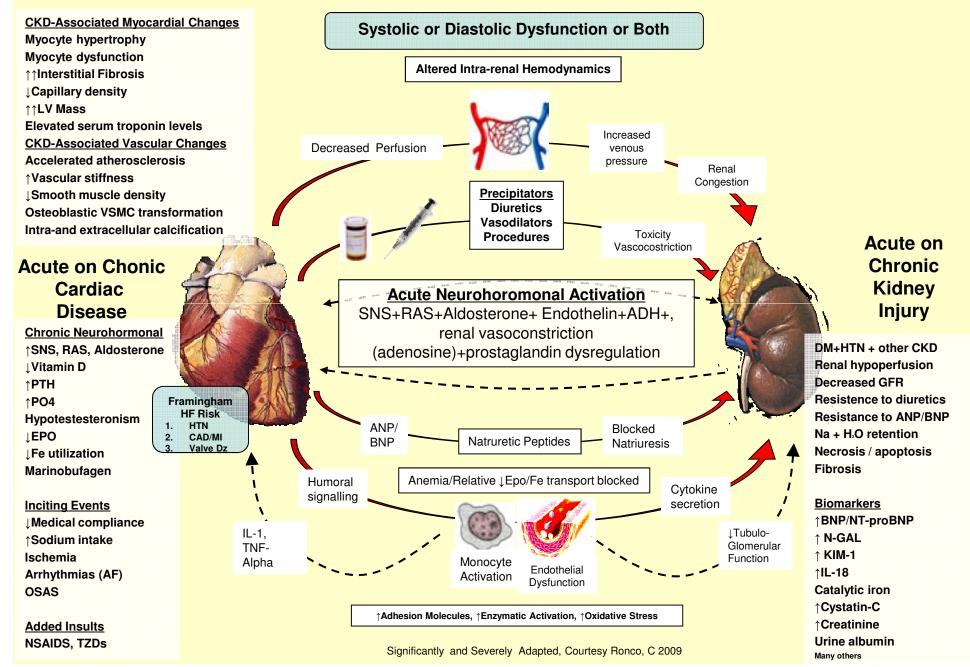
Mortality, n (%)	WRF absent	WRFpresent	OR (95% CI)	P-value
For the 248 patients who	o did not develop a major in-h	ospital complication during the	index admission ^a	
	n = 176	n = 72		
In-hospital	2 (1.1%)	3 (4.2%)	3.75 (0.62-23.1)	0.15
30 days	6 (3.4%)	3 (4.3%)	1.23 (0.30-5.1)	0.72
180 days	28 (16.5%)	12 (17.4%)	1.07 (0.51-2.24)	0.86
For the complete cohort	of 299 patients hospitalized v	vith worsening heart failure ^b		
	n = 201	n = 98		
In-hospital	3 (1.5%)	12 (12.3%)	9.2 (2.6-33.5)	0.002
30 days	9 (4.6%)	14 (14.6%)	3.5 (1.5-8.5)	0.003
180 days	35 (18.1%)	26 (28.0%)	1.8 (0.98-3.2)	0.08

^aFollow-up by 30 days for mortality: 244/248 (98%) complete; follow-up by 180 days for mortality: 239/248 (96%) complete. ^bFollow-up by 30 days for mortality: 291/299 (97%) complete; follow-up by 180 days for mortality: 285/299 (95%) complete.

Worsening renal function (WRF) defined as an increase in serum creatinine of 0.26 mmol/L (0.3 mg/dL)
Major complication included: circulatory shock, hypotension, cardiac arrest, sepsis, acute coronary syndrome

European Heart Journal (2006) 27, 1216-1222

Outline


Definitions

- Complex, bidirectional pathogenesis
- Example of novel target

Therapy

Putting it all together

Cardio-Renal Syndrome Pathophysiology

High Central Venous Pressure and CRS

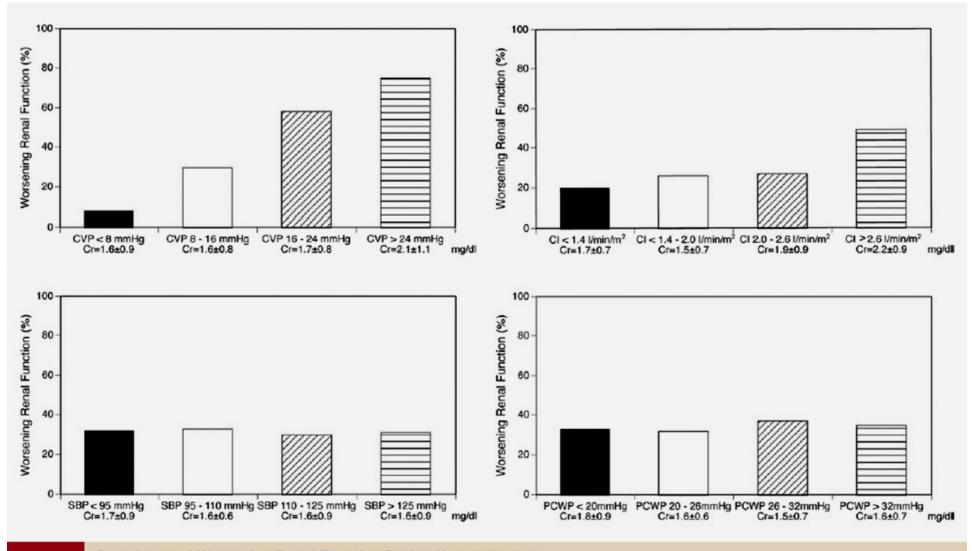


Figure 1 Prevalence of Worsening Renal Function During Hospitalization According to Categories of Admission CVP, CI, SBP, and PCWP

JACC Vol. 53, No. 7, 2009

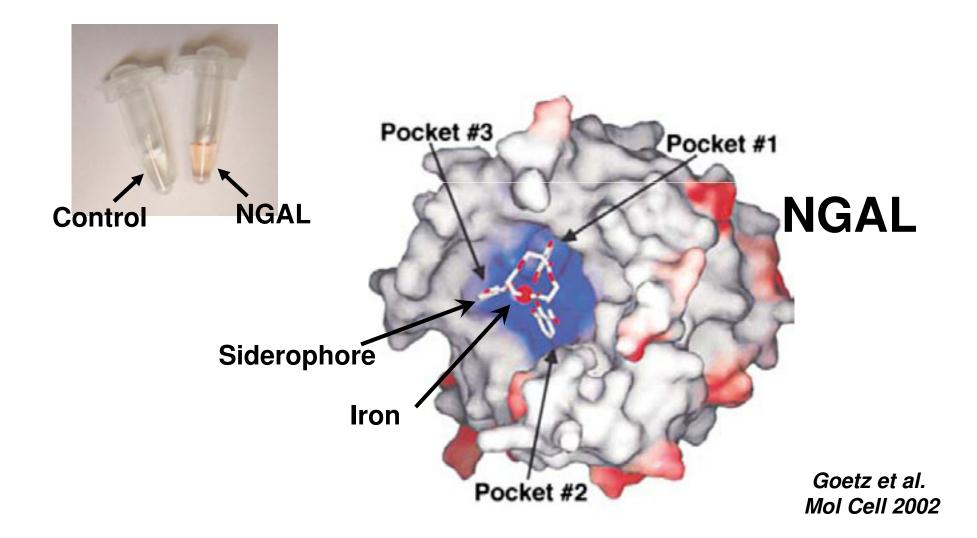
CI = cardiac index; Cr = serum creatinine; CVP = central venous pressure; PCWP = pulmonary capillary wedge pressure; SBP = systolic blood pressure.

Venous Congestion and Glomerular Filtration

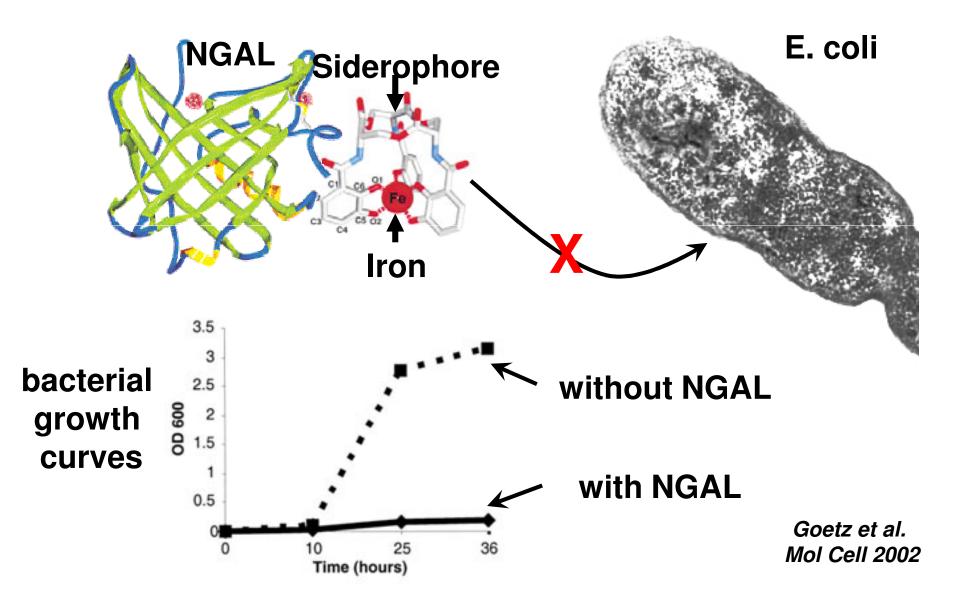
Venous	vman's	Norm	al	A RA pr	essure
(Efferent)	Forces 1. Favoring Filtration Glomerular-capillary hydrostatic pressure, P _{GC}	end of	Efferent end of glomerular capillary (mmHg) 58	Afferent end of	Efferent end of glomerular capillary (mmHg) 63
	 2. Opposing Filtration a. Hydrostatic pressure in Bowman's capsule, P_{BC} b. Oncotic pressure in glomerular capillaries, π_G 		15 33	15 21	15 33
Arterial (Afferent)	Net filtration pressure (1 Filtration pressure:	-2) 24 14 mi	10 nHg	19 4 m/	15 mHg

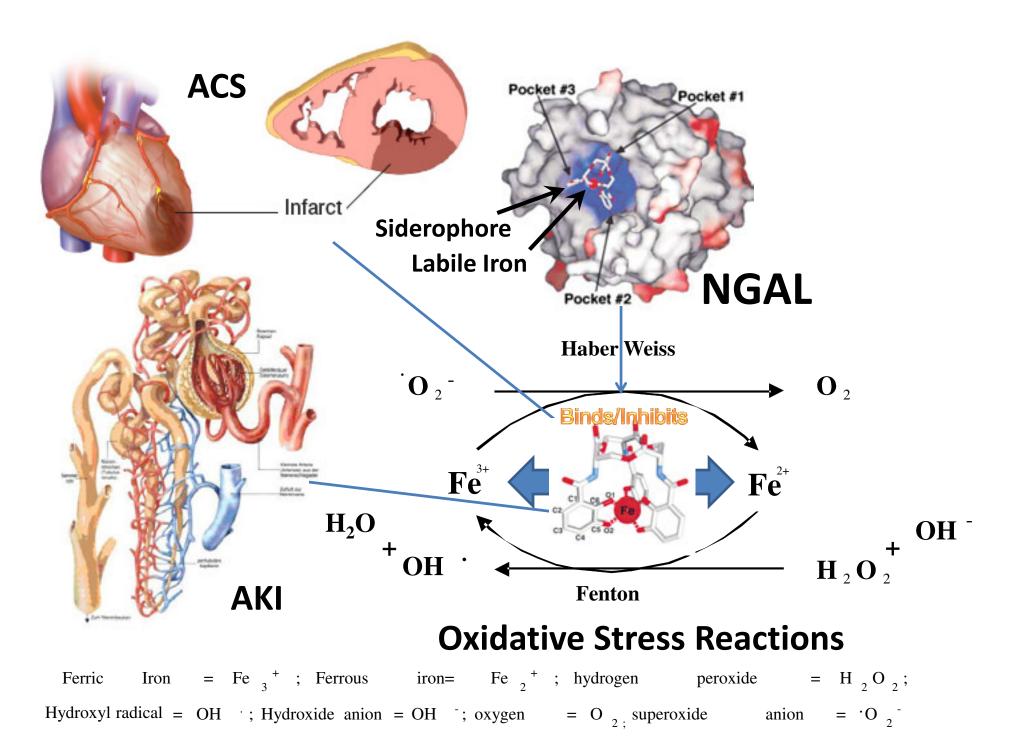
Figure 1 Impact of Venous Congestion on Glomerular Net Filtration Pressure

An illustration of the afferent and efferent pressures at a glomerular capillary in a patient with normal hemodynamics and a patient with increased right atrial (RA) pressure and venous congestion. P_{BC} = hydrostatic pressure in Bowman's capsule; P_{GC} = glomerular capillary hydrostatic pressure; π_{GC} = oncotic pressure in glomerular capillaries.

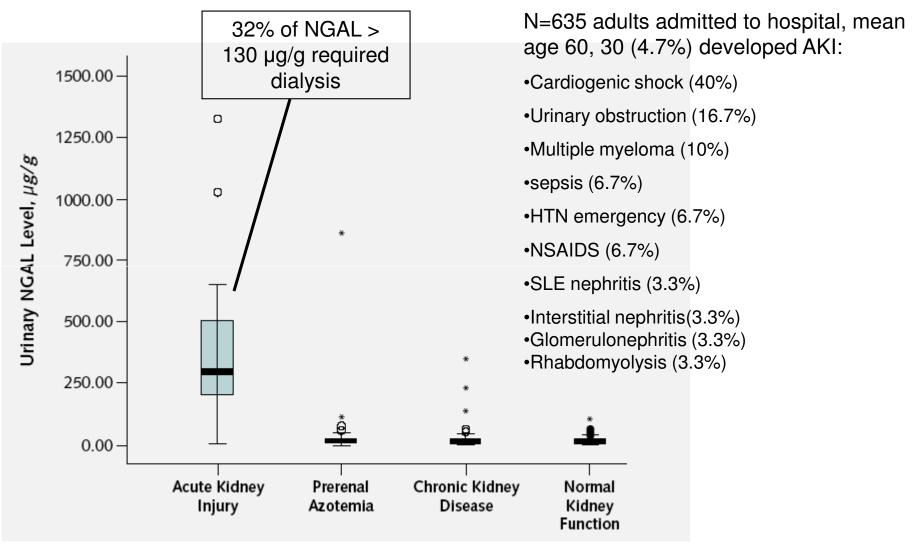

Definitions

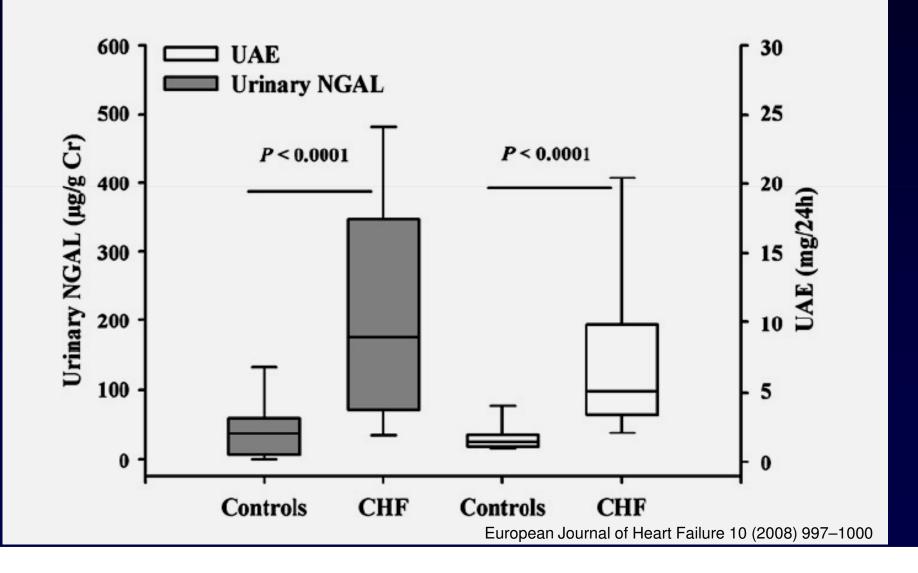
- Complex, bidirectional pathogenesis
- Example of novel target


Therapy

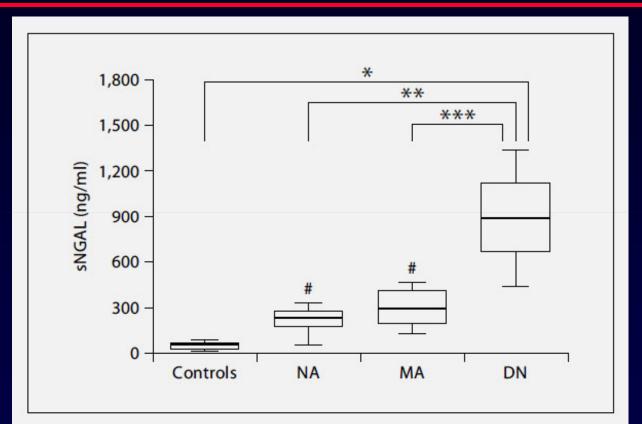

Putting it all together

Neutrophil Gelatinase-Associated Lipocalin (NGAL) – a specific biomarker of acute kidney injury


NGAL is an endogenous bacteriostatic protein by reducing available catalytic iron


Diagnosis of Early AKI in Emergency Department

Acute kidney injury was based on the RIFLE (risk, injury, failure, loss, and end-stage) criteria



Ann Intern Med. 2008;148:810-819.

Urinary Neutrophil Gelatinase Associated Lipocalin (NGAL) Is Increased in Patients with Chronic Heart Failure

Serum Neutrophil Gelatinase Associated Lipocalin (NGAL) Is Increased in Patients with Diabetes and Microalbuminuria

Fig. 1. sNGAL in control subjects and patient groups with normoalbuminuria (NA), microalbuminuria (MA) and diabetic nephropathy (DN). [#] p < 0.01 vs. controls; ^{*} p < 0.001 vs. controls; ^{**} p < 0.01 vs. NA; ^{***} p < 0.01 vs. MA.

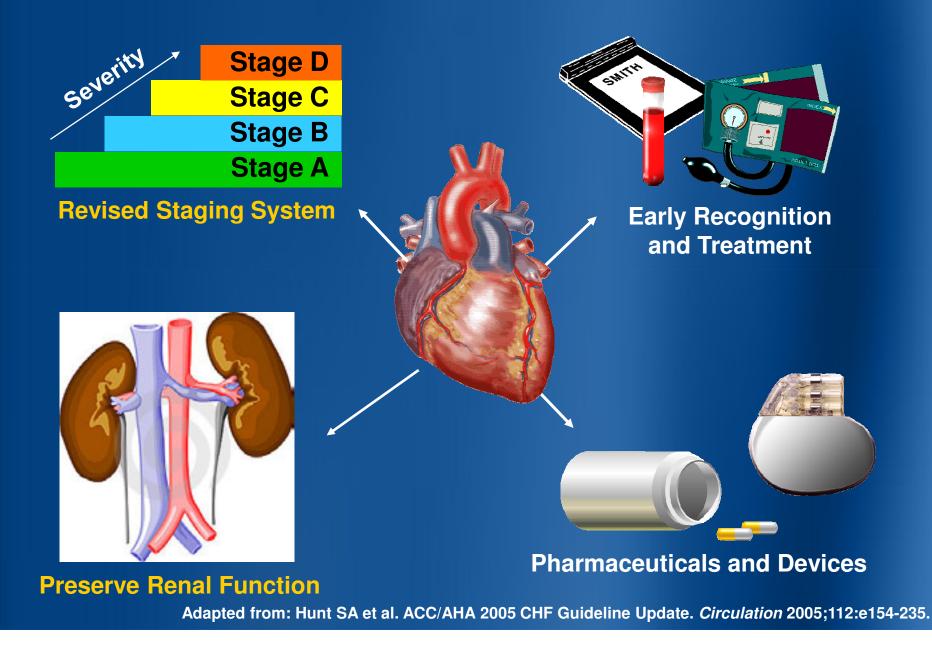
Overexpressed/Recombinant NGAL as a Preventive Strategy

•May play an extracellular role in cell defense against toxicants and/or facilitate the survival of the remaining cells (in vitro human adenocarcinoma A549 cells)

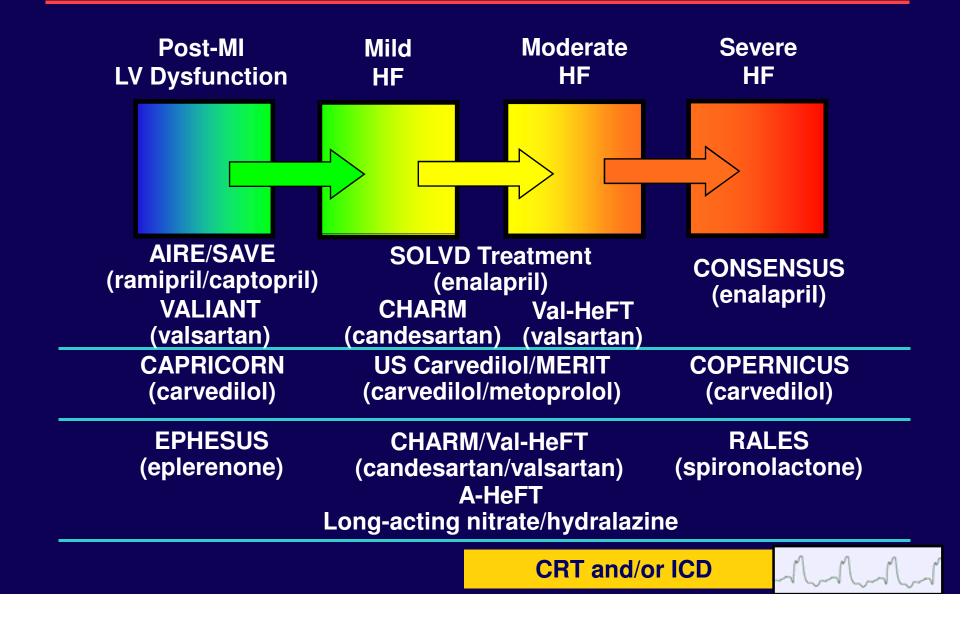
•Potent inducer of heme-oxygenase-1 and superoxide dismutase SOD(1) and SOD(2) and it appears that part of antioxidant property of NGAL could be attributed to the induction of HO-1 and SOD(1, 2)

Protects against heat/cold stress

•Protects against H₂O₂ induced apoptosis


Biochem. J. (2005) 391 (441–448), Cell Stress Chaperones. 2009 Nov 11., Exp Cell Res. 2009 Nov 1;315(18):3140-51. Arch Med Res. 2008 Aug;39(6):560-6

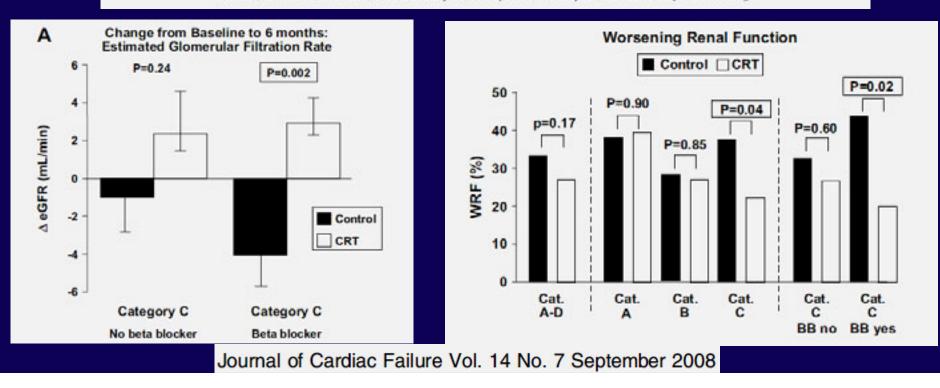
Outline


Definitions

- Complex, bidirectional pathogenesis
- Example of novel target
- Therapy
- Putting it all together

Heart Failure Management

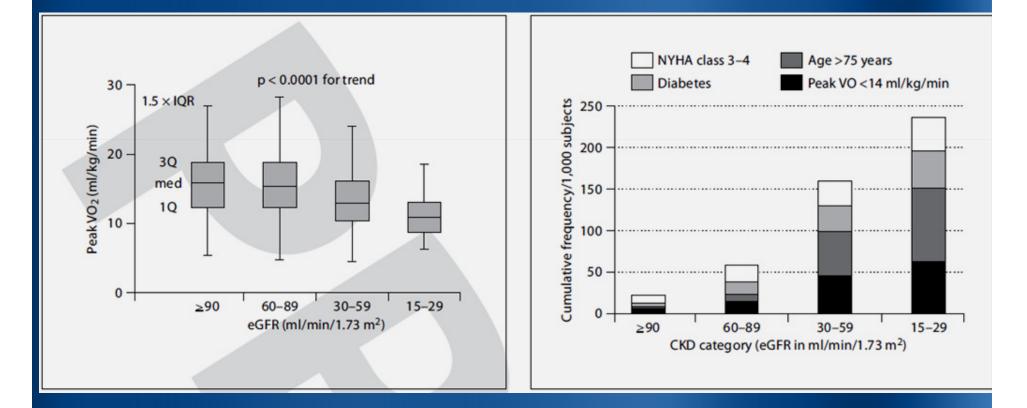
Pharmacologic Therapy and CRT


Journal of Cardiac Failure Vol. 14 No. 7 2008

Clinical Trial

Cardiac Resynchronization Therapy Improves Renal Function in Human Heart Failure With Reduced Glomerular Filtration Rate

GUIDO BOERRIGTER, MD,¹ LISA C. COSTELLO-BOERRIGTER, MD, PhD,¹ WILLIAM T. ABRAHAM, MD,² MARTIN G. ST. JOHN SUTTON, MD,³ DENISE M. HEUBLEIN,¹ KRISTIN M. KRUGER, BSN,⁴ MICHAEL R.S. HILL, PhD,⁴ PETER A. MCCULLOUGH, MD, MPH,⁵ AND JOHN C. BURNETT JR, MD¹


Rochester, Minnesota; Columbus, Ohio; Philadelphia, Pennsylvania; Minneapolis, Minnesota; Royal Oak, Michigan

CKD in HF ACTION Trial (EF < 35%)

Characteristic	CKD level				p value	
	all	1 (>90)	2 (89–60)	3 (59–30)	4 (29–15)	for trend
Number	2,091	338	947	728	78	
Demographics						
Age, years	59 ± 13	50 ± 13	57 ± 12	65 ± 11	67 ± 12	< 0.0001
Age >75 years, %	11	3	6	19	31	< 0.0001
Male, %	72	70	73	74	70	0.33
Caucasian, %	61	42	60	71	71	< 0.0001
African American, %	33	53	34	24	26	< 0.0001
Other race, %	5	5	5	5	4	0.58
Medical history, %						
Hypertension	61	57	59	63	68	0.02
Diabetes mellitus	33	33	26	40	45	< 0.0001
Chronic obstructive pulmonary disease	11	7	11	13	13	0.008
Stable angina	26	25	26	28	22	0.53
Prior myocardial infarction	43	27	42	50	53	< 0.0001
Prior coronary artery bypass surgery	26	15	22	35	36	< 0.0001
Chronic prescribed medications, %						
Angiotensin-converting enzyme inhibitors	74	81	75	71	65	0.0001
ARB	24	20	23	27	22	0.04
Spironolactone/eplerenone	46	45	48	45	35	0.16
β-Blockers	95	96	95	94	95	0.19
Nitrates	25	18	23	30	32	< 0.0001
Calcium channel blockers	7	7	7	7	3	0.77
Loop diuretics	79	70	76	87	88	< 0.0001
Digoxin Am J Nephrol. 2010;32(3):226-33. Epub 2010	46 Jul 22	46	45	48	35	0.92

CKD in HF ACTION Trial (EF < 35%): Peak VO2 and Clustered Risk Features

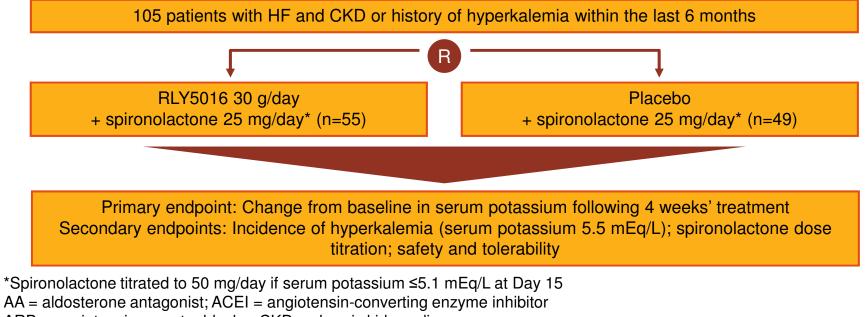
Am J Nephrol. 2010;32(3):226-33. Epub 2010 Jul 22

Pfizer Announces EMPHASIS-HF Trial to Halt Recruitment due to Significant Benefit Observed in Patients Treated With Inspra® (Eplerenone)

Announcement Follows Recommendation of Data Safety Monitoring Committee and Executive Steering Committee

NEW YORK, May 27 /PRNewswire-FirstCall/ -- Pfizer Inc. (NYSE: PFE) announced that it plans to halt recruitment to the EMPHASIS-HF trial early on the recommendations of the trial's independent Executive Steering Committee (ESC). The recommendations follow a second interim analysis by the independent Data Safety Monitoring Committee (DSMC) of the EMPHASIS-HF trial confirming the study has reached its primary efficacy endpoint early according to the protocol pre-defined stopping rules.

∎^ Like It


(Logo: http://photos.prnewswire.com/prnh/20100416/PFIZERLOGO)

The interim analysis showed that patients treated with INSPRA® (eplerenone), in addition to current standard of care, experienced a significant reduction in risk of cardiovascular (CV) death or heart failure (HF) hospitalization compared with those on the placebo arm of the trial where patients received standard of care in addition to a matching placebo.

Based upon the interim analyses by the independent data safety monitoring committee, eplerenone, generally, was well tolerated during the EMPHASIS-HF trial. Adverse events reported included hyperkalemia (elevated potassium) (8 per cent of the eplerenone group vs 3% in the placebo group; p < 0.001) and renal impairment (4 per cent in the eplerenone group vs 2% in the placebo group; p < 0.001) and renal impairment (4 per cent in the eplerenone group vs 2% in the placebo group; p < 0.05). These adverse events are common with mineralcorticoid receptor antagonist agents.

PEARL HFStudy design and methods

- PEARL-HF was a multicenter, randomized, double-blind, placebo-controlled, parallelgroup, multiple-dose study that compared RLY5016 30 g (non-absorbed, oral, potassium binding polymer) once daily with placebo
- Eligible patients were those with serum potassium 4.3–5.1 mEq/L, and CKD (eGFR <60 mL/min) on one or more HF therapies (ACEIs, ARBs, or β-blockers), or documented history of hyperkalemia (serum potassium >5.5 mEq/L) within the last 6 months leading to the discontinuation of an AA, ACEI, ARB, or β-blocker

- ARB = angiotensin receptor blocker CKD = chronic kidney disease
- eGFR = estimated glomerular filtration rate; HF = heart failure
 - Pitt B. ESC Scientific Session 2010. Stockholm, Sweden

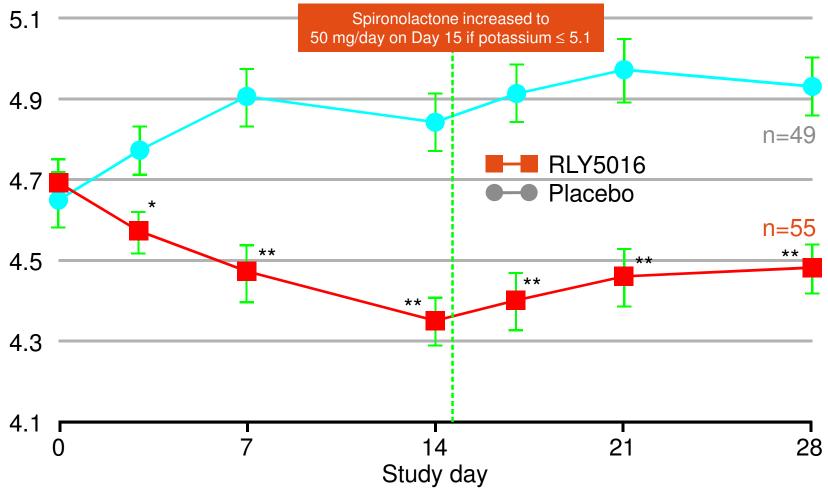
Baseline patient characteristics

	RLY5016 30 g/day (n=55)	Placebo (n=49)	р
Age (years)	68.3±8.6	68.2±10.5	0.940
Male (%)	53	69	0.108
BMI (kg/m²)	28.4±5.5	27.0±4.3	0.145
HF duration (years)	4.5±4.8	4.1±3.4	0.581
Ejection fraction (%)	39.6±11.7	41.2±11.8	0.561
NYHA class (%) I II III IV	4 53 44 0	2 57 41 0	0.936
eGFR (mL/min)	84.1	78.1	0.360
Diabetes (%)	27	37	0.399

BMI = body mass index; eGFR = estimated glomerular filtration rate

HF = heart failure; NYHA = New York Heart Association

Pitt B. ESC Scientific Session 2010. Stockholm, Sweden


Baseline medications

	RLY5016 30 g/day (n=55)	Placebo (n=49)	р
No RAAS inhibitors or β-blockers*, n (%)	0	2 (4)	NS
ACEI, ARB or β-blocker only, n (%)	13 (24)	9 (18)	NS
ACEI or ARB + β-blocker, n (%)	40 (73)	37 (76)	NS
ACEI + ARB + β-blocker, n (%)	2 (4)	1 (2)	NS
Diuretics (Total), n (%)	41 (75)	36 (73)	NS
Thiazide, n (%)	10 (18)	6 (12)	NS
Loop, n (%)	32 (58)	27 (55)	NS
Indapamide, n (%)	4 (7)	5 (10)	NS

*Eligible under criteria of discontinuation of RAAS inhibitor due to hyperkalemia ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker NS = not statistically significant; RAAS = renin-angiotensin-aldosterone system Pitt B. ESC Scientific Session 2010. Stockholm, Sweden

Change from baseline in serum potassium by visit

LS mean serum potassium (mEq/L)

*p<0.01; **p<0.001 Pitt B. ESC Scientific Session 2010. Stockholm, Sweden

Proportion of patients receiving up-titration to spironolactone 50 mg/day*

	RLY5016 30 g/day (n=55)	Placebo (n=49)	р
Patients receiving up- titration to spironolactone 50 mg/day, n (%)	50 (91)	36 (74)	0.019

*Spironolactone titrated to 50 mg/day if serum potassium ≤5.1 mEq/L at Day 15

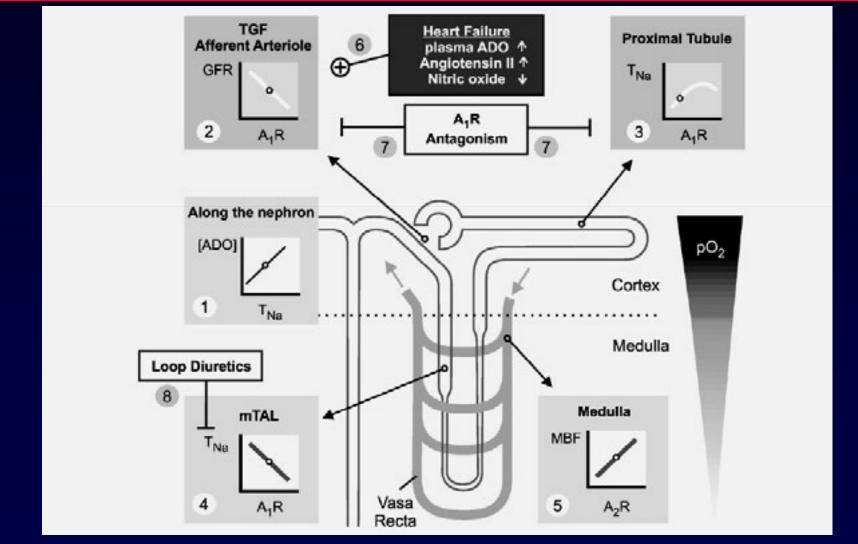
Pitt B. ESC Scientific Session 2010. Stockholm, Sweden

Summary of adverse events

	RLY5016 30 g/day (n=55)	Placebo (n=49)	р
At least one AE, n (%)	30 (54)	15 (31)	0.019
At least one GI AE, n (%)	12 (21)	3 (6)	0.028
SAEs, n (%)	2 (4)	2 (4)	NS
Deaths, n (%)	0	1 (2)	NS
Discontinuations due to AE, n (%)	4 (7)	3 (6)	NS

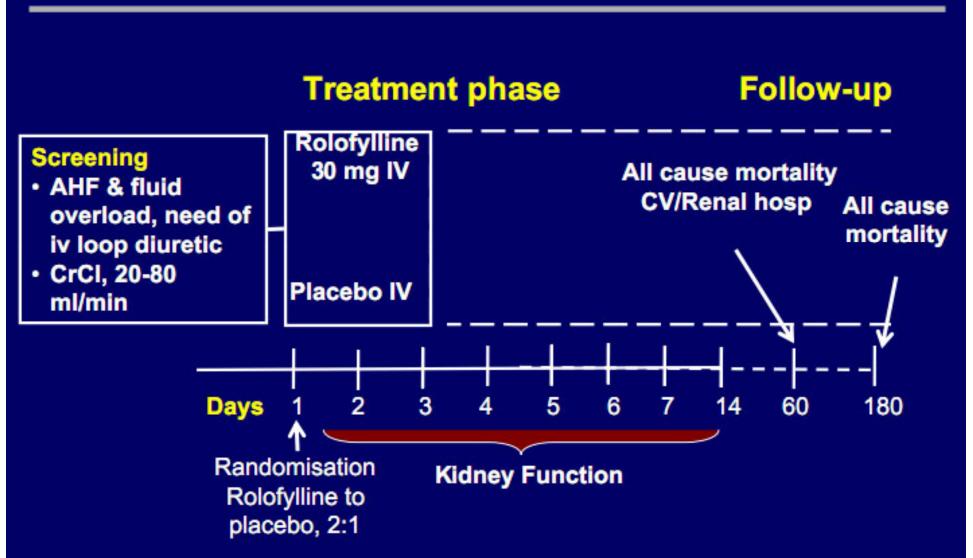
No SAEs were deemed to be drug-related by the investigators AE = adverse event; GI = gastrointestinal; SAE = serious AE

Recognize Failures from Clinical Trials and Registries


- Programmatic use of PA catheter (Nohria JACC 2008)
- Programmatic use of inotropes/indodilators (ACC/AHA Guidelines)
- High-dose loop diuretics (Heywood, ADHERE, HF Reviews, 2005)
- Beta-blocker withdrawal (Fonarow, JACC 2008)
- ACEI/ARB withdrawal (Shukla, CIRC, 2008)
- Digoxin withdrawal (Packer, NEJM, 1993)
- Rolophylline (PROTECT, ESC, 2009)
- Endothelin receptor antagonists (Forbes KI 2001)
- Argnine vasopressin receptor antagonists (Konstam JAMA 2007)
- ?Nesiritide (Sackner-Bernstein, CIRC, 2005)

Drug/Strategy Ineffective/Harmful

OR


Have not identified the ideal patient subset for benefit

Role of Adenosine in the Kidney: Type 1 and Type 2 Adenosine Receptors

V. Vallon et al. Eur J Heart Fail 10 (2008) 176-187

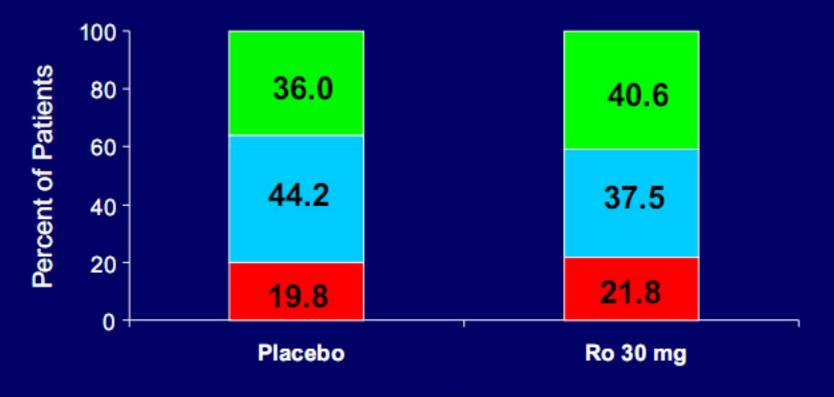
PROTECT STUDY DESIGN

Metra M,, et al. Effects of Rolofylline in Patients with Acute Heart Failure Syndrome and Renal Impairment: Findings from the PROTECT Study. ESC 2009

Inclusion/Exclusion Criteria

Inclusion Criteria

- Male or female; aged ≥18 years
- History of heart failure of ≥14 days duration for which diuretic therapy has been prescribed
- BNP ≥ 500 pg/mL or NT-proBNP ≥ 2000 pg/mL
- Hospitalized for AHFS requiring IV diuretics and anticipated need for IV diuretics for at least 24 hours
- Impaired renal function (CrCl 20-80 mL/min, Cockcroft–Gault)
- Systolic blood pressure <a>>>95 mm Hg (but < 160 mmHg) at randomization

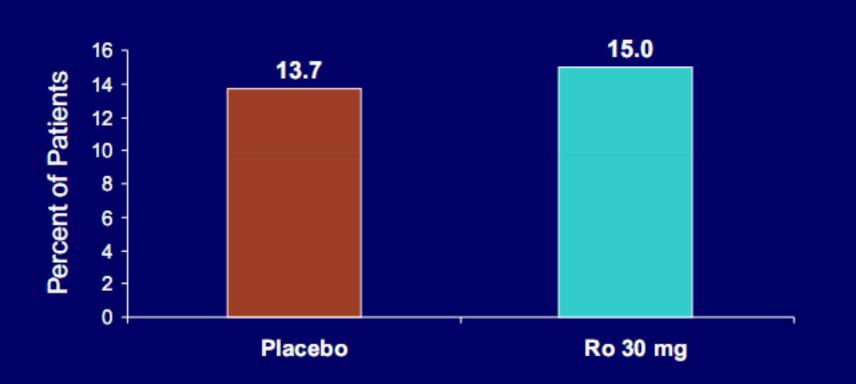

Key Exclusion Criteria

- Severe pulmonary disease
- Significant cardiac valve stenosis
- Clinical evidence of ACS in the 2 weeks before screening
- High risk for seizures (e.g., history of seizure, stroke within 2 years, brain tumor, brain surgery within 2 years)

Metra M,, et al. Effects of Rolofylline in Patients with Acute Heart Failure Syndrome and Renal Impairment: Findings from the PROTECT Study. ESC 2009

Primary Endpoint

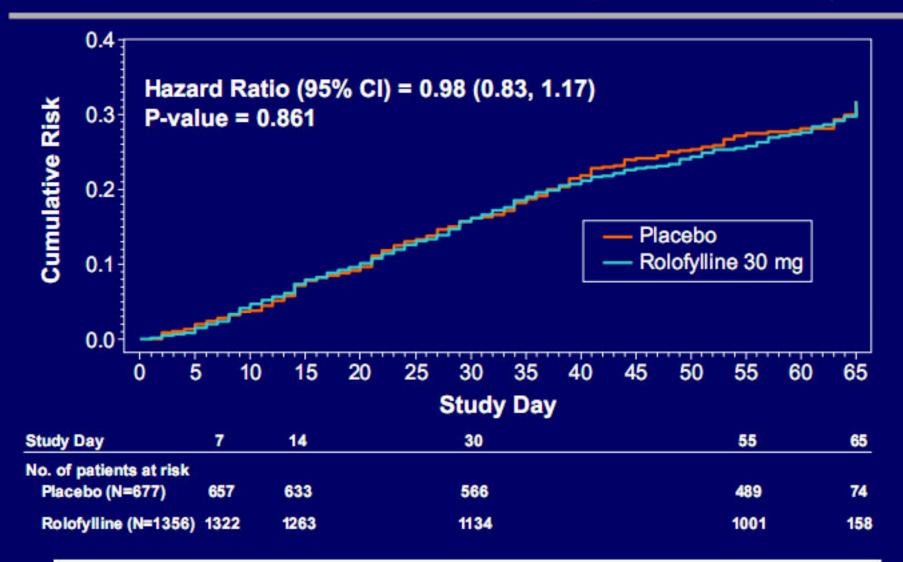
Odds ratio (95% CI) vs Pbo: 0.92 (0.78, 1.09)



Treatment Success Patient Unchanged Treatment Failure

p=0.348 for comparison of distribution using the van Elteren extension of Wilcoxon test Metra M,, et al. Effects of Rolofylline in Patients with Acute Heart Failure Syndrome and Renal Impairment: Findings from the PROTECT Study. ESC 2009

Secondary Endpoint: Persistent Renal Impairment*


Odds ratio (95% CI) vs Pbo: 1.11 (0.85, 1.46); p = 0.441

*Persistent renal impairment SCr + >0.3 mg/dL at both Day 7 and Day 14 or

initiation of hemofiltration or dialysis through Day 7, or death by Day 7 Metra M,, et al. Effects of Rolofylline in Patients with Acute Heart Failure Syndrome and Renal Impairment: Findings from the PROTECT Study. ESC 2009

Time to Death or CV or Renal Rehospitalization - Day 60

Death: Placebo 9.5% vs rolofylline 8.9%

Re-hospitalization: Placebo 25.6% vs rolofylline 25.7%

Metra M,, et al. Effects of Rolofylline in Patients with Acute Heart Failure Syndrome and Renal Impairment: Findings from the PROTECT Study. ESC 2009

Dopamine in Acute Decompensated Heart FailureDopamine in Acute Decompensated Heart Failure (DAD-HF) trial

•ADHF, O_2 sat <90%, and BNP >400 pg/mL

•Excluded serum Cr >200 μ mol/L (2.26 mg/dl), eGFR<30 mL/min per 1.73 m²), SBP <90 mm Hg.

Randomized to receive higher-dose IV furosemide (40-mg bolus followed by 20 mg/hr for 8 hrs) or lower-dose furosemide (40-mg bolus followed by 5 mg/hr for 8 hrs) plus dopamine (5 μg/kg per min for 8 hrs)

•N=300 planned for death or hospitalization endpoint, first 50 patients randomized at the centers in Greece reported

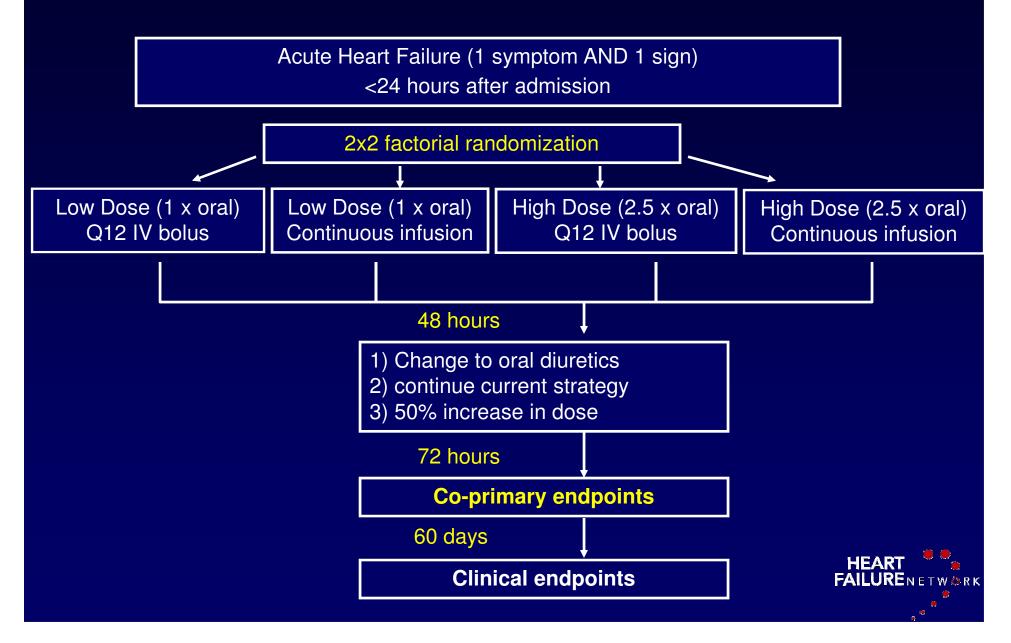
Triposkiadis F. Renoprotective and potassium-sparing effects of low-dose dopamine in acute decompensated heart failure. Heart Failure Society of America 2009 Scientific Meeting; September 16, 2009; Boston, MA. Late-Breaking Clinical Trials 2.

DAD-HF: Urine Output and Serum Creatinine

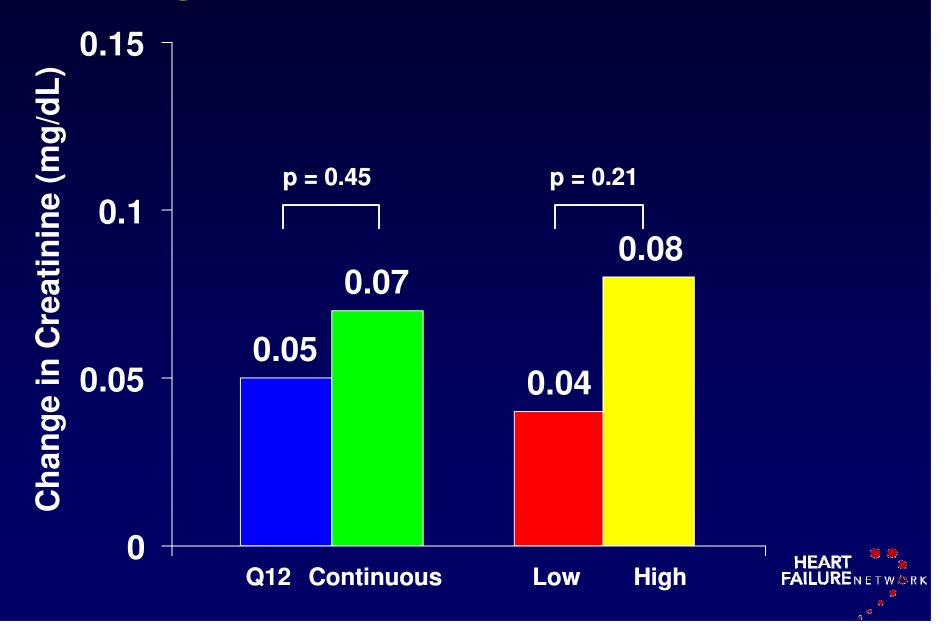
Cumulative urine output during eight-hour infusion of high-dose furosemide vs low-dose furosemide plus low-dose dopamine*

Infusion (h)	High-dose furosemide (mL), n=25	Low-dose furosemide/dopamine (mL), n=25
2	647	847
4	948	1272
6	1223	1510
8	2214	1888

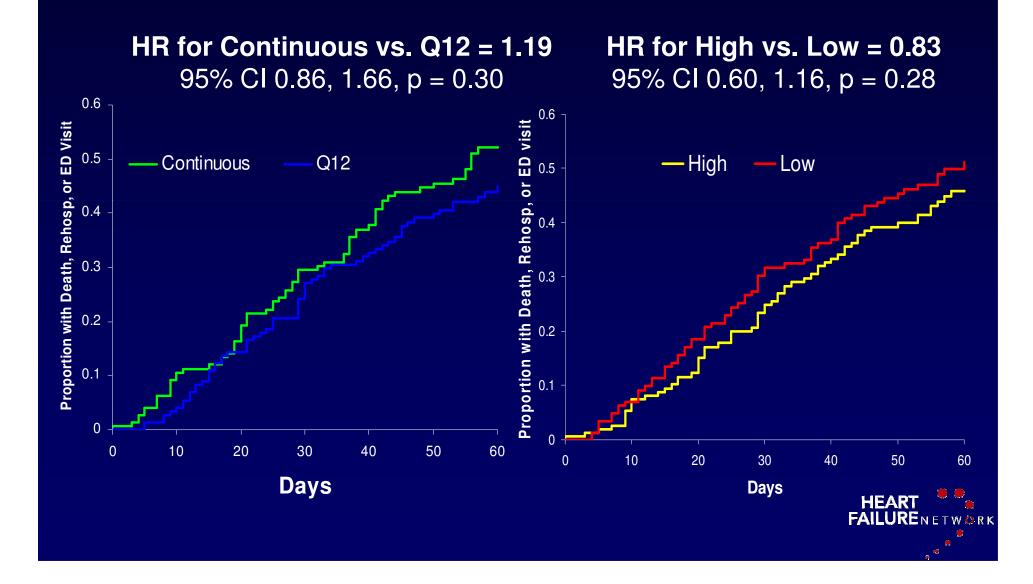
*All differences between the groups nonsignificant


Measures of worsening renal function at 24 hours for high-dose furosemide vs low-dose furosemide plus low-dose dopamine

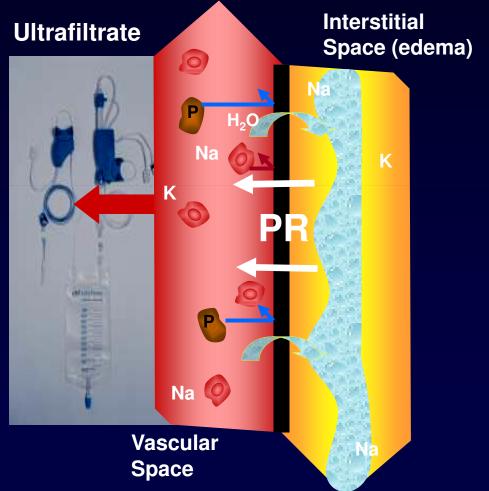
Measure	High-dose furosemide (%)	Low-dose furosemide/dopamine (%)	р
sCr, >0.3-mg/dL increase	36	4	0.005
sCr, >25% increase	36	4	0.004
eGFR, >10% decrease	64	28	0.011


sCr=serum creatinine; eGFR=estimated glomerular filtration rate

Triposkiadis F et al. Heart Failure Society of America 2009 Scientific Meeting; September 16, 2009: Boston, MA.


DOSE Trial: Study Design

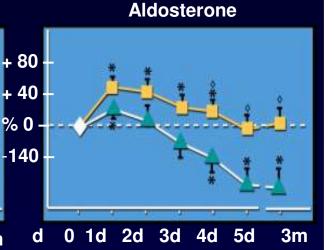
Change in Creatinine at 72 hours



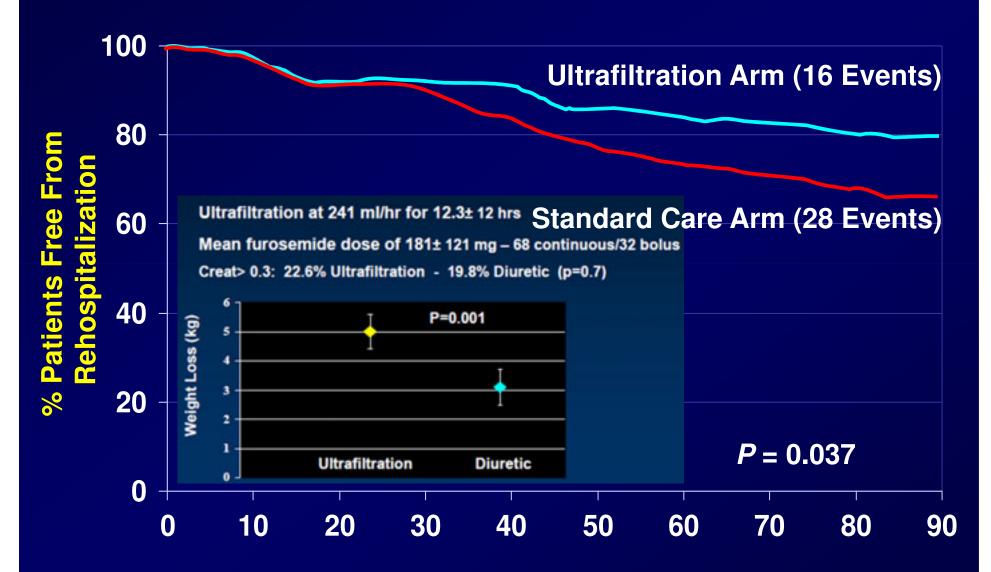
Death, Rehospitalization, or ED Visit


Fluid Removal by Ultrafiltration

- Removes fluid from the blood at the same rate that fluid can be naturally recruited from the tissue
- Transient removal of blood illicits compensatory mechanisms, termed plasma or intravascular refill ^{1,2}
- Ultrafiltrate is isotonic with plasma,
- Removes more sodium than diuretic therapy
- Decreases ECF volume more than a comparable volume of diureticinduced fluid loss without neurohormonal activation


Effects of Ultrafiltration vs IV Furosemide

Neurohormones

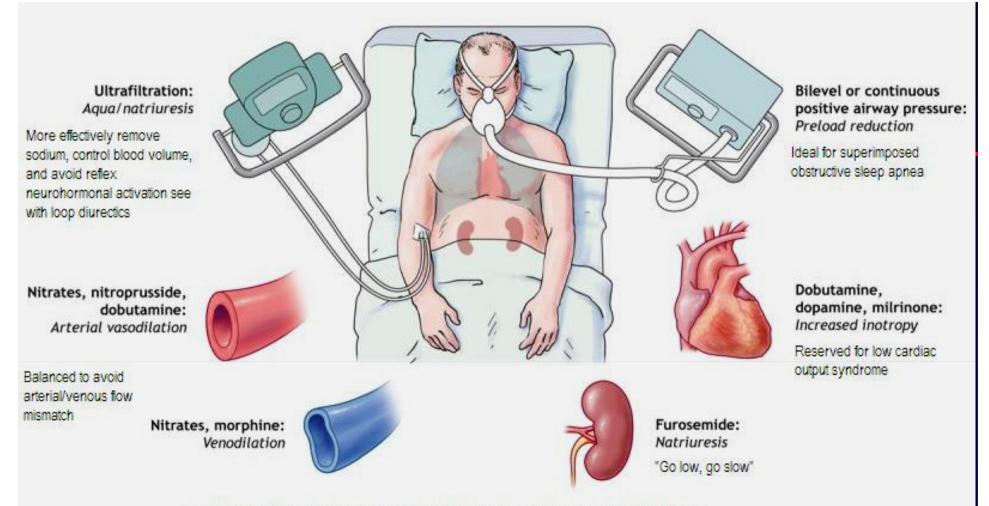

Plasma Renin Activity

Triangles = Ultrafiltration Squares = Furosemide

Agostoni et al. Am J Med. 1994;96:191-199.

UNLOAD Trial: N=200, RCT, Freedom From Heart Failure Rehospitalization Within 90 Days After Discharge

Costanzo, M. et al., J Am Coll Cardiol 2007;49:675-83.


Outline

Definitions

- Complex, bidirectional pathogenesis
- Example of novel target

Therapy

Putting it all together

Avoid or remove major precipitants: cardiac ischemia, sodium excess, NSAIDS, TZDs, iodinated intravascular contrast, medication non-compliance, abrupt diuresis with high-dose loop diurectics

Cardiorenal Syndromes

Ronco C, Bellomo R, McCullough PA (eds): Cardiorenal Syndromes in Critical Care. Contrib Nephrol. Basel, Karger, 2010, vol 165, pp 101–111