Method and duration of hemodialysis

Ercan Ok MD Ege University School of Medicine Division of Nephrology Izmir, Turkey

How to improve outcomes in hemodialysis

 After a change in payment policy in the US, number of nephrologist visits per month markedly increases in HD pts

 Results: In the comparison of 12 months before and 7 months after,

• They concluded that "no clinically important change in surrogate markers despite doubling of nephrologist visit number per month" *Mentari EK, Am J Kidney Dis 2005, 46: 621-7*

Do we really have efficient tools to improve outcomes in hemodialysis ?

- <u>ACE-I</u>: No survival benefit FOSIDIAL
- <u>Statins</u>: No survival benefit 4D, AURORA
- <u>Non-Ca based PO₄-binders</u>: No better PO₄ control, no survival benefit CARE, D-COR
- <u>Erythropoietin</u>: Good or bad ? CHOIR, CREATE
- Folic acid: No survival benefit HOST
- <u>High flux membrane, high blood flow</u>: No survival benefit – HEMO (advantage only in some subgroups, MPO)
- <u>Ultra-pure dialysate</u>: Unknown
- <u>Hemodiafiltration</u>: Unknown

Any missing ones ?

MORE INTENSIVE DIALYSIS

SALT RESTRICTION & VOLUME CONTROL

SALT RESTRICTION & VOLUME CONTROL

50-90% of dialysis patients are hypertensive despite several anti-hypertensive medications

Mailloux LU, Am J Kidney Dis 1998

Whereas almost no hypertension in early years of HD

• Blood pressure was normal in 91% of patients without antihypertensive medications in 1960s (9 reports)

What has changed in the last 30 years ?

* Anti-HTN= % of patients using antihypertensive medications

- Duration of HD sessions \downarrow
- Dialysate Na concentration 1
 - Dietary Na intake 1
 - Use of anti-HT medication 1
 - Blood pressure 1

Charra B, Hemodial Int 2007

Salt intake-interdialytic weight gain and mortality

Higher IDWG & overall mortality in diabetics

Kimmel PL, Kidney Int 2000

• Higher left atrial volume & mortality in HD patients

Tripepi G, J Hypertens 2006

• Higher UF rate & overall mortality

Movilli E, Nephrol Dial Transplant 2007

Higher IDWG & CV and overall mortality

Kalantar-Zadeh K, Circulation 2009

 Predictive role of LA volume for mortality is dependent on IDWG

Ozdogan O, Am Heart J 2010

Implementation of "volume control strategy" in Ege University Dialysis Center

Before 1993,

- 65% of patients were using anti-hypertensive medications
- Interdialytic weight gain over 3 kg
- Heart failure frequent, cardiothoracic index above 0.5 in 75%
- Intradialytic hypotension and cramps frequent
- Some patients diagnosed as uremic cardiomyopathy
- Many patients requested to stop earlier dialysis because of hypotension and cramps in the last hours of dialysis

Volume control policy implemented by Dr Evert J Dorhout Mees in Ege University

- 12 15 hours HD per week
- Dialysate Na concentration 135-138 mmol/L
- Discontinuation of anti-hypertensive medications
- Strict dietary salt restriction (as lower as possible with aim of 50 mmol/day) to reduce interdialytic weight gain below 2 kg
- Recommendation for fluid intake: "not to drink more or less than thirst feeling indicated"

- Insistent UF for dry weight reduction until blood pressure becomes below 140/90 mm Hg and cardiothoracic index below 0.50 (CTi: calculated as the largest inner diameter of the rib cage divided by the largest diameter of the heart shadow on the chest X-ray)
- If needed, temporarily additional UF sessions
- If in doubt for renin-dependent hypertension, if BP becomes normal after a test dose of 25 mg PO captopril, start an ACE-I

The results of switch from conventional approach to volume control strategy

• 67 hypertensive HD patients, stop anti-hypertensive medications, insistent UF, dietary salt restriction; 4 years follow-up

- At the end, only 4% in need of anti-HT medication
- No edema, no heart failure
- Intradialytic hypotension and cramps decreased
- Hemoglobin and serum albumin levels increased

Ozkahya M, Am J Kidney Dis 1999

Regression of left ventricular hypertrophy with volume control

 Two echocardiographies in 15 prevalent HD patients with a mean interval of 37 11 months after implementation of volume control policy

	First	Second
 Systolic BP (mmHg) 	136 11	101 14
 Diastolic BP (mmHg) 	119 8	82 12
• CTi	0.48 0.03	0.43 0.04
 Left atrial diameter (mm/m²) 	22.5 3.1	19.9 4.4
 LV mass index (g/m²) 	175 60	105 11

Ozkahya M, Nephrol Dial Transplant 1998

Treatment of paradoxical hypertension by ultrafiltration

 Seven patients with paradoxical hypertension who were not responsive to medications (no edema but cardiac dilatation)

 After reduction of body weight below a threshold value (6.7 3.0 kg), paradoxical BP increases during HD disappeared

 CTi decreased; EF increased; valvular regurgitations regressed; serum albumin increased

Disappearance of mitral and tricuspid regurgitation by ultrafiltration in HD patients

- 21 patients with valvular insufficiency (no sign of heart failure but cardiomegaly)
- Dry weight reduction with slow ultrafiltration in long term (months) (mean decrease in body-weight 5.4 \pm 2.7 kg)

	Before UF	After UF
Mitral regurgitation (n)	20	7
Tricuspid regurgitation (n)	18	4
Mean arterial pressure (mmHg)	126 ± 15	95 ± 11
Cardio-thoracic index (%)	57	47
Mitral annular diameter (mm/m²)	23	19
Left ventricul systolic diameter (mm/m ²⁾	25 ± 5	21 ± 5
Left ventricul end-diastolic diameter (mm/m ²⁾	31 ± 5	27 ± 5

Hypervolemic hemodialysis patients with low ejection fraction

- 12 prevalent HD patients with heart failure who had ejection fraction
 ≤45% (mean EF 31 9%) (mean age 43 9 years)
- 7 of 12 were diabetics
- BP low in half of them, valvular regurgitation present in all cases

Treatment

- Prolonged sessions or additional isolated UF sessions
- Slow UF (0.2–0.5 L/h)
- Mean decrease in body weight 12 10 kg (corresponding to 19% of baseline body weight) in 20-120 days

Toz H, Hemodial Int 2007

Significant improvement of low ejection fraction by ultrafiltration

- Heart failure findings disappeared in all patients
- Ejection fraction increased in all, from 31 9% to 50 9%
- BP increased in cases with low BP at baseline
- Valvular regurgitations disappeared or improved

Toz H, Hemodial Int 2007

Relationship between blood pressure and mortality in patients treated with volume control policy

 Patients with SBP between 101-110 mmHg had lowest mortality rate
 Ozkahya M, et al Nephrol Dial Transplant 2006

Relationship between overhydration determined by chest x-ray and survival

Independent predictors of mortality

	Risk Ratio	95% CI	P-value
Age at start of HD			
<45 years	Reference		
≥ ≥45 years	5.01	1.98–12.67	0.001
SBP in follow up (mmHg)			
100–130	Reference		
<100	1.37	0.57–3.28	0.472
130–140	1.90	0.83–4.35	0.125
>140	10.33	3.87-27.60	<0.001
CTI in follow-up			
≥ <0.48	Reference		
≥ 0.48	3.84	2.05–7.18	<0.001
	O-lealers M		

Ozkahya M, et al Nephrol Dial Transplant 2006

A cross-sectional study

- Comparison of the two dialysis centers regarding BP and cardiac geometry and functions
- Center A practiced volume control strategy, Center B antihypertensive medication - based strategy

	Center A	(n: 190)	Center B	(n: 204)	р
Anti-hypertensive use (%)	7	•	42	2	<0.01
IDWG (kg)	2.29	0.83	3.31	1.12	<0.001
Systolic BP (mmHg)	126	15	126	21	ns
Diastolic BP (mmHg)	75	12	76	11	ns
Intradialytic hypotension episode per 100 sessions	1 [.]	1	2	7	<0.01

 No difference regarding age, sex, diabetes, HD duration, dialysate composition Kayikcioglu M, Nephrol Dial Transplant 2009

Cardiac aspect

- Despite similar BP control, volume control strategy is associated with
 - lesser cardiac dilatation
 - lower left ventricular mass
 - better preserved systolic and diastolic functions

How to achieve successfull salt restriction ?

- Are physicians convinced on the followings ?
 - Salt intake leads to irresistible thirst and fluid intake
 - Interdialytic weight gain is due to salt intake not water intake (predialysis serum Na <130 mmol/L in only 0.3% of 7179 HD patients with normoglycemia)
 - Intradialytic hypotension does not indicate that dry weight has been reached but an ultrafiltration rate higher than refill rate
 - Do not forget that nurses who are the key persons for success must be convinced

Large differences of IDWG in the same country: Determinant role of dedicated health professionals

Patients and their families

- How can we help our patients for this "addiction"?
 - To tell these facts **again and again**
 - To talk their family members
 - To explain that adaptation to salt-free diet takes approximately one month (if he/she does not consume salty food in this period, then salt sensing of his/her tongue will be changed)

To organize common information and discussion sessions

 To provide opportunities for compliant patients to share their positive experiences with other patients

Dietary recommendations

- In our country-our condition, we suggest:
 - No salt during cooking and eating
 - Salt-free bread
 - Diminish to consume processed food
- If it is an obligation to consume **processed food**,
 - Solution is **more difficult**
 - To find / prefer salt-poor products
 - GOVERNMENTS ARE EXPECTED TO GRADUALLY RESTRICT SALT CONTENT OF FOODS

Conclusion

- Hypertension can be treated by volume control policy in patients treated with conventional hemodialysis regimen without anti-hypertensive medications.
- Overhydration even in the absence of hypertension is important and should be treated.
- Dietary salt restriction is essential and it can be achieved.

DURATION OF HEMODIALYSIS

History

In the early era of chronic dialysis with 20-40 h/week HD

- Excellent BP control, rare intradialytic BP drop
- Satisfactory nutritional status
- Sufficient RBC production
- Nearly full rehabilitation, almost no neuropathy

Ann Intern Med 1967; 67: 1149

Short dialysis

"Intensive utilisation of a dialysis unit"

- From 27 hour/week in 1971 to 12 hour/week in 1972
- Successful adaptation, similar biochemical results "except phosphate"

Cambi V, Proc Eur Dial Transplant Assoc 1973; 10: 342

Short dialysis schedules – "Finally ready to become a routine ?"

Proc Eur Dial Transplant Assoc 1973; 10: 342-8

Although "bilateral nephrectomy is required in 2 cases for BP control!"

Why dialyze more than 6 hours a week?

Rotellar E, ASAIO Trans 1985; 31:538

- How long should it be ? Need for a scale ?
- "God sent Kt/V for short hemodialysis"

Twardowski ZJ, University of Missouri

- Despite presence of hypertension, hyperphosphatemia, anemia, "dialysis is adequate if Kt/V is above ..."
- And now we face:

Problems in patients treated with three times weekly four-hour hemodialysis

- High mortality and morbidity, low QOL
- Numerous troubles
 - High/low BP, LV hypertrophy, heart failure, arrhythmia
 - Anemia, malnutrition, inflammation
 - Hyperphosphatemia, vascular calcification

USRDS, Am J Kidney Dis 2003; 42 (Suppl 5): S103

- Introduction of several medications to solve these problems (Epo, P-binders, ACE-I, carniten, Na-modelling, gabapentin, etc)
- Extra cost (equal to 1/4 to 1/2 of dialysis cost)
- No survival benefit with these medications

Clinical benefits of intensive HD

	Nocturnal HD	Short daily HD
Blood pressure control	+++	++
Left ventricle hypertrophy	+++	++
LV systolic function	+++	Not shown
Arterial compliance	+++	Not shown
Sleep apnea	Correction	Not shown
Cardiac autonomic abnormalities	Restoration	Not shown
Phosphate control	+++	Depends on duration
Anemia	++	+
Malnutrition	++	++
Inflammation	CRP and IL-6 \downarrow	CRP ↓
Cognitive function	+	Not shown
Fertility	++	Not shown
	Perl J	, Am J Kidney Dis 2009

Survival in NHD similar to cadaveric RTx

Pauly RP, Nephrol Dial Transplant 2009

- Best survival data with three times weekly HD from Tassin: 8-h in-center HD
 - Excellent patient survival (5-year survival 87%)
 - Very few hypertension, good phosphate control, less anemia

Kidney Int 1992; 41: 1286

- No prospective study to compare hemodialysis regimens applied in the past and now
- Frequent Hemodialysis Network randomized trials: conventional HD versus in-center short daily HD and versus home nocturnal HD

Long Dialysis Study

- Prospective, matched-controlled study to compare 8-h and 4-h in-center HD; follow-up one year *ClinicalTrials.gov Identifier: NCT00413803*
- 224 prevalent conventional HD patients were assigned to 8-h three times weekly in-center nocturnal HD (NHD) and
- 224 age-, sex-, diabetic status-, and HD vintage-matched control cases to 4-h conventional HD (CHD)
- No difference in baseline parameters

	NHD (n: 224)	CHD (n: 224)
 Mean age (years) 	45 ± 12	45 ± 12
 Female 	3	2%
 Diabetes 	2	20%
 HD vintage (months) 	58 ± 44	58 ± 44
 Duration of HD session (min) 	455 \pm 20 *	236 ± 8
Blood flow (ml/min)	$240\pm36~{}^*$	291 ± 31

Time-averaged data; * p<0.0001

Overall mortality

	NHD	CHD	р
12 month-survival (%)	98.7	93.8	0.009
Death rate (n/100-pt-yr)	1.29	6.03	<0.05
 Multivariate analysis 			
NHD vs CHD	0.23 (0.0)6-0.80)	0.02
Age (per 1 year)	1.07 (1.0)3-1.11)	<0.001

* Adjusted for age, gender, diabetes, and HD duration Model Chi-square: 24.3, p<0.001

Time-averaged laboratory values

	NF	ID	CH	łD	p value	
spKt/V	1.86	0.33	1.38	0.25	<0.001	
Pre-dialysis K (mEq/L)	5.00	0.55	5.11	0.55	0.042	
Phosphate (mg/dl)	3.89	1.20	4.95	1.14	<0.001	
CaxP product (mg ² /dl ²)	35.0	11.3	43.6	10.9	<0.001	
Albumin (g/dl)	4.03	0.25	3.93	0.29	<0.001	
Total cholesterol (mg/dl)	174	42	166	40	0.040	
Triglyceride (mg/dl)	210	137	181	107	0.021	
Hemoglobin (g/dl)	11.8	1.4	11.5	1.6	0.030	
Ferritin (ng/ml)	788	618	921	728	0.045	
Transferrin saturation (%)	27	14	32	16	0.004	
Bicarbonate (mEq/L)	23.8	1.7	23.2	1.8	<0.001	
hsCRP (mg/dl)	1.41	1.38	1.70	1.74	0.055	

• Higher Kt/V, albumin, Hb, HCO₃, triglyceride, total cholesterol in NHD

• Lower K, PO₄, ferritin, transferrin saturation in NHD

Hospitalization

Intradialytic hypotension

- 73% less all-cause hospitalization rate in the NHD arm (p<0.05)
- Marked decrease in intradialytic hypotension episodes in the NHD group (p <0.01)

Blood pressure control

No change in mean arterial BP in both arms

 Requirement of anti-hypertensive medication decreased from 24% to 8% in the NHD group

Nutritional status

Increase in post-dialysis body weight in NHD group, with stable blood pressure (from 65 14 to 67 15 kg, p<0.001)</p>

Increase in serum albumin level (from 3.95 0.29 to 4.10 0.29 g/dL, p<0.0001)

Anemia management

Hemoglobin levels slightly increased in both arms (p<0.01)

 Proportion of patients on Epo declined from 57 to 22% in the NHD group (p<0.0001)

Phosphate control

 Serum P levels decreased from 4.59 1.31 to 3.83 1.2 mg/dl at 12th month in NHD patients (p<0.0001)

Use of P-binder declined from 81 to 22% (72% reduction)

Cardiac structure

Decrease in LA diamater in the NHD group (from 2.35 0.40 mm/m² BSA to 2.17 0.34, p<0.001)

Regression in LV mass index in the NHD group (from 140 44 g/m² BSA to 116 34, p<0.001)

The effect of longer HD on progression of coronary artery calcification

- Two multi-slice CTs in 89 patients with an interval of 10 months (43 NHD, 46 CHD)
- Followed for at least 6 months in the Long Dialysis Study
- Baseline demographical, clinical, laboratory data similar
- In follow-up serum P, CaxP product, use of P-binder and BP medication were lower in the NHD group

Change in median CAC score in patients with baseline score >200

 Lower progression rate with NHD in patients with moderate to severe vascular calcification

 Serum phosphate was predictor for CAC progression (Exp-B 2.05, 95% CI 1.46-2.90, p < 0.001)

The effect of longer HD on arterial stiffness

- Pulse wave analysis and pulse wave velocity (from carotid to radial arteries) in 115 patients at baseline and 12 months (AtCor®, PWV Inc., Westmead, Sydney, Australia) (55 NHD, 60 CHD)
- Baseline demographical, clinical, laboratory data similar
- In follow-up serum P and CaxP product were lower in the NHD group

Augmentation index

Alx increased in CHD arm, slightly decreased in NHD

- Change in AIx significantly different between two arms
- Serum P predictor for delta Alx (B-coefficient 0.349, t 2.58, p < 0.01)</p>

Pulse wave velocity

Pulse wave velocity decreased in the NHD group

Ejection duration

 Diastolic dysfunction assessed by "ejection duration" improved in the NHD group

Serum P was predictor for change in ejection duration (ßcoefficient 0.415, t 3.25, p < 0.01)</p>

Subendocardial perfusion

 Subendocardial perfusion reflected by "subendocardial viability ratio" increased in NHD

Predictors for improvement were lower CRP and NHD (ß-coefficient -0.397, t -3.45, p < 0.01) (ß-coefficient 0.314, t 2.70, p < 0.01)</p>

The effect of longer HD on volume and nutrition status - BIA

- Multi-frequency bio-impedance analysis in 122 patients at baseline and 12th month (5, 50, 100, 200 kHz) (62 NHD, 60 CHD)
- Baseline demographical, clinical, laboratory data similar
- In follow-up, higher eKt/V and serum albumin, lower serum P and hsCRP in the NHD arm

Extracellular fluid volume measured by bio-impedance analysis

	NHD	CHD
Baseline	0.25 0.02	0.25 0.02
12th month	0.24 0.01	0.26 0.01
р	<0.01	<0.05

 ECV decreased in the NHD group, increased in the CHD group

Body fat mass and dry lean mass measured by bio-impedance analysis

 Increase in body fat mass and dry lean mass in the NHD group

The effect of longer HD on ventricular arrythmias

- Holter ECG in 60 patients at baseline and at 3rd month; midweek 48-h recording (30 NHD, 30 CHD) (mean duration 2714 60 min)
- Baseline demographical, clinical, laboratory data similar; EF and LVMI not different
- In follow-up, lower use of anti-hypertensive medication and hypotension episode in the NHD arm

Premature ventricular ectopia

PVE (n/1000 HR/per period)

 Decrease in PVE at all time-points in the NHD group, no change in CHD patients

Conclusion

Implementation of longer HD sessions may improve several outcomes:

- Better phosphate control, slow down in progression of vascular calcification, improvement in arterial stiffness
- Better volume and blood pressure control, regression of cardiac enlargement and left ventricular hypertrophy
- Improvement in anemia, reduction of Epo requirement; decrease in ventricular arrythmia

Conclusion

- Improvement in nutritional status
- Decrease in intradialytic complications and hospitalization
- Decrease in mortality

Limitations of the presented studies

- Non-randomized
- Relatively small numbers of study cases
- Relatively short follow-up
- Methods not most accurate ones (echo instead of MRI for LV geometry)

SALT RESTRICTION & VOLUME CONTROL AND MORE INTENSIVE DIALYSIS

- It seems that we have some effective but underutilized tools to improve cardiovascular outcomes in dialysis patients.
- Problems are those:
- Compared to drug studies, difficulties in conducting randomized studies on both subjects, which are asked by nephrology community to be convinced
- Both requires serious enforcement from not only nephrologists but also governmental health authorities

Dialysis, as longer as possible

> Salt, as lower as possible

Thank you