Estimated GFR Based on Creatinine and Cystatin C

Lesley A Stevens, MD, MS

Tufts Medical Center, Tufts University School of Medicine Boston MA

Chronic Kidney Disease-Epidemiology Collaboration

UO1 DK 053869, UO1 DK 067651 and UO1 DK 35073.

Background

- GFR is essential to detection, management, and evaluation of CKD
- GFR is difficult to measure and is usually estimated from serum markers
- GFR estimates are used to:
 - Estimate measured GFR
 - Predict risk for adverse outcomes
- Interpretation of GFR estimates depends upon properties of the equations and the filtration markers

- Physiology of endogenous filtration markers
- Creatinine
 - Physiology
 - MDRD Study equation
 - CKD-EPI equation
- Cystatin C
 - Physiology
 - CKD-EPI equations
 - Predictors of serum levels

Physiology of Endogenous Filtration Markers

Creatinine Physiology

The MDRD Study equation

- MDRD Study equation
 - Derived from 1628 participants with predominantly non-diabetic CKD (mean GFR 40 ml/min/1.73 m²)
 - Age, sex and race as surrogates for non-GFR determinants
- Reasonable accuracy in CKD populations
- Systematic bias (underestimation) of measured GFR at higher levels
- Imprecision throughout the GFR range

The MDRD Study equation

- Predicts higher risk for adverse outcomes at lower eGFR
- Paradoxical higher risk observed in people at higher eGFR

Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI)

• **Goal:** Develop and validate improved estimating equations

 Diverse dataset of individuals with & without kidney disease, and across range of measured GFR and age
Additional surrogates for non-GFR determinants

 Inclusion criteria: study population >250; availability of serum samples; quality control data

Final studies

- Category 1: 10 studies; equation development (random selection of 2/3 of data) and internal validation (remaining 1/3 of data)
- -Category 2: 16 studies; external validation

Levey et al <u>Ann Int Med</u> 2009; 150: 604 612

Clinical Characteristics of CKD-EPI Datasets

	Category 1 (10 studies) Development and Internal Validation	Category 2 (16 studies) <i>External</i> <i>validation</i>
Ν	8254	3896
GFR (mL/min/1.73 m ²)	67 (40)	68 (36)
Diagnosed CKD, N (%)	6004 (73)	2143 (55)
Age (years) N, (SD)	47 (15)	50 (15)
Female, N (%)	3606 (44)	1753 (45)
Black, N (%)	2602 (32)	384 (10)
Diabetes, N (%)	2406 (29)	1091 (28)
Transplant recipient, N (%)	360 (4)	1130 (29)
BMI (kg/m²) N (SD)	28 (6)	27 (6)

Levey et al <u>Ann Int Med</u> 2009; 150: 604 612

GFR = 141 x [min(Scr/κ),1)^α x max(Scr/κ),1)^{-1.209}] x Age^{-0.993} x 1.018 [if female] x [1.157 if Black]

 α is 0.329 for females and 0.411 for males; min indicates minimum of Scr/ κ or 1, and max indicates maximum of Scr/ κ or 1

Female	≤0.7 →	GFR = 144 x (Scr/0.7) ^{-0.329}		
	>0.7 >	GFR = 144 x (Scr/0.7) ^{-1.209}	x Age ^{-0.993}	x 1.157
Male	≤ 0.9 →	GFR = 141 x (Scr/0.9) ^{-0.411}		[if black]
	>0.9 >	GFR = 141 x (Scr/0.9) ^{-1.209}		

Levey et al Ann Int Med 2009; 150: 604 612

Comparison of the Performance of the MDRD Study and CKD-EPI equations (Validation dataset)

Comparison of distribution of estimated GFR for MDRD Study and CKD-EPI equations (NHANES 1999-2004)

Values are plotted at the midpoint.

Levey et al <u>Ann Int Med</u> 2009; 150: 604 612

Cystatin C and the Risk of Death and Cardiovascular Events among Elderly Persons

Figure 1. Mortality from All Causes According to Quintile of Measures of Renal Function.

Shlipak et al. *N Engl J Med* 2005;352:2049-60

Relationship of Plasma Level and GFR for Cystatin C

Age, mean (SD), years	52.0 (13.2)
Female, N (%)	1006 (32.1)
Black, N (%)	1677 (53.5)
Diabetes, N (%)	436 (13.9)
Transplant, N (%)	0
BMI, mean (SD), kg/m ²	28.7 (6.1)
GFR, mean (SD), ml/min/1.73 m ²	48.7 (25.7)
Standardized Scr, mean (SD), mg/dl	2.0 (1.0)
Cystatin C, mean (SD) mg/l	1.8 (0.8)

Stevens LA, et al. Am J Kidney Dis. 2008;51:395-406

Equation	Δ		P ₃₀
	Median	IQR	
Creatinine age, sex and race*	0.1	10.8	85
Cystatin alone	0.2	11.7	81
Cystatin age, sex and race	0	11.2	83
Both age, sex and race	0.1	9.2	89

 Δ =mGFR-eGFR. Positive value indicates underestimate IQR, interquartile range P_{30,} percentage of esteimates within 30% of measured GFR

*Refit MDRD Study equation

Stevens LA, et al. Am J Kidney Dis. 2008;51:395-406

Non-GFR Determinants of Cystatin C vs Creatinine in patients with CKD

Summary

- All endogenous filtration markers have non-GFR determinants that affects interpretation of their accuracy as well as prediction of risk
- The CKD-EPI equation is more accurate than the MDRD Study equation
 - Less bias at eGFR >60
 - Similar performance at eGFR <60
 - Imprecision remains
- Cystatin C based estimates
 - Provide similar or less accurate estimates of measured GFR in populations with CKD
 - Non-GFR determinants are not well understood but may explain some of the improved risk prediction