Autosomal Dominant Tubulo-Interstitial Kidney Disease

Anthony J. Bleyer, M.D.
Wake Forest School of Medicine
Winston-Salem, NC

1944	Thorn and Kopf describe a young man with salt wasting and CKD
1951	Fanconi describes two families with autosomal recessive kidney disease in childhood. "Nephronophthisis
1960	Duncan and Dixon describe inherited gout and kidney disease
1962	Straus: 18 cases of cystic disease of the renal medulla: only 2 inherited
1966	Goldman and Gardner identify five generation family with inherited kidney disease
1966-1980	For some reason clinicians cannot determine that there are recessive and dominant forms of the disease.

1990's	Cameron and Stewart describe a number of families with juvenile hyperuricemia and kidney disease. Allopurinol prevents progression
1999	Dahan et al propose that MCKD2 and FJHN are the same disease
2001	UMOD mutations identified
2011	REN mutations identified
2013	MUC1 mutations identified

 Genetics has sorted out the diseases but terminology remains a problem!

Corinne Antignac, MD

Friedhelm Hlidebrandt, MD

Inherited Tubulo-Interstitial Kidney Disease

First Case 4/18/96

- 41 year old white male
 - Gout in late teens
 - Father, brother, 2 uncles and one aunt with gout and kidney disease
 - Serum Creatinine 3.2 mg/dl
 - Serum uric acid 7.2 mg/dl on allopurinol
 - Bland urinalysis

Family Tree

MCKD2

- Mutations in uromodulin identified as cause of disease
- Gout is found in almost all the families with this disorder
- All families are hyperuricemic

Uromodulin Mutations

Result in deposition of mutant uromodulin in the ER

Most mutations involve a cysteine

UMOD Mutations that Cause Uromodulin Kidney Disease Cysteine-Rich 2 Cysteine-Rich Domain of 8 Cysteines (199-287) (287 - 334)Deletion 177-185 Transmembrane Domain Deletion 188-221 Cell Membrane Extracellular Matrix Signal Peptide Color-coding key: Mutation - substitution Mutation - substitution & deletion Mutation - deletion substitution Wake Forest® Cysteine mutation - substitution & School of Medicine Cysteine mutation - substitution & Likely clinically silent mutation

Diagnosis

- Fairly straightforward
- Gout is such an important sign of the disease and recognized easily by family members
- Most clinicians recognize the gout as a factor
- UMOD mutational analysis available clinically

Mutation	UMOD		
Loss of normal gene function	[↑] Urate Gout		
Tx of loss of fxn	Allopurinol	GO	
Knockout mouse	Nonspecific effects?		
Gene deletion or truncation	No effect		
Abnormal production	Intracellular deposition, Kidney failure		

What's in a name?

Case #2

- 8 year old girl
 - Developed acute kidney injury after a bout of fever treated with NSAID's
 - Anemia
 - Hyperuricemia
 - Mild hypotension
 - Chronic kidney disease
- Father also had slowly progressive chronic kidney disease and anemia as a child

Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure

Martina Živná,^{1,2} Helena Hůlková,² Marie Matignon,^{4,5} Kateřina Hodaňová,^{1,2} Petr Vylet'al,^{1,2} Marie Kalbáčová,^{1,2} Veronika Barešová,^{1,2} Jakub Sikora,² Hana Blažková,² Jan Živný,³ Robert Ivánek,^{1,2} Viktor Stránecký,^{1,2} Jana Sovová,² Kathleen Claes,⁶ Evelyne Lerut,⁶ Jean-Pierre Fryns,⁷ P. Suzanne Hart,⁸ Thomas C. Hart,⁹ Jeremy N. Adams,⁸ Audrey Pawtowski,¹⁰ Maud Clemessy,¹² Jean-Marie Gasc,¹² Marie-Claire Gübler,^{11,13} Corinne Antignac,^{10,11,13} Milan Elleder,^{1,2} Katja Kapp,¹⁴ Philippe Grimbert,^{4,5} Anthony J. Bleyer,¹⁵ and Stanislav Kmoch^{1,2,*}

Characteristics

- Low renin
 - Anemia from birth until puberty
 - Mildly elevated potassium
 - Mildly low blood pressure
 - **Prone to acute kidney injury
- mREN
 - Intracellular deposition
 - Progressive kidney disease

Normal Renin Abnormal Renin Low Aldosterane

Normal Renin

Abnormal Renin

FLUDROCORTISONE

Fludrocortisone Treatment

- Treats aldosterone deficiency
 - Corrects mild hyperkalemia
 - Decreases risk from volume depletion
- Removes "bad" renin
 - Prevents tubulo-interstitial fibrosis

Fludrocortisone Treatment

Time	BP	Wt	K	Cr	Uvol	
-11wk	87/50	15	5.0	1.3	1825	
-1wk		87. 6	5.6	1.6	2275	
1wk	106/69	90	4.2	1.1	2450	
6wks	112/67		4.3	1.0	2675	

Mutation	UMOD	REN	MUC 1
Loss of normal gene function	[↑] Urate Gout	√BP, Hgb ↑K, Urate	
Tx of loss of fxn	Allopurinol	Fludrocortisone	
Knockout mouse	No effect	Death in utero	
Gene deletion or truncation	No effect	No effect	
Abnormal production	Intracellular deposition, Kidney failure	Intracellular deposition, Kidney failure	

MCKD1 genetics team

Linkage, sequence analysis

Andrew Kirby
Christine Stevens
Kiran Garimella
Mark dePristo
Jim Robinson

Bioinformatics Analysis
Jimmie Ye
Nathalie Pochet
Aviv Regev
Lizzy Rossin

MUC1, targeted sequence & assembly

Andi Gnirke
Dave Jaffe
Chad Nusbaum

DNA sequencing
Jen Baldwin
Jane Wilkinson
Lauren Ambrogio
Snaevar Sigurdsson
Kerstin Lindblad-Toh

Clinical Phenotyping & Functional Insights

Tony Bleyer Suzanne Hart

Linkage of 6 MCKD1 families to Chromosome 1

Broad Institute

 2 individuals from 6 linked families underwent whole exome analysis

RESULTS: No mutations

• 99.9% of the genome excluded ©

genetics

Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in *MUC1* missed by massively parallel sequencing

Andrew Kirby^{1,2}, Andreas Gnirke¹, David B Jaffe¹, Veronika Barešová³, Nathalie Pochet^{1,4}, Brendan Blumenstiel¹, Chun Ye¹, Daniel Aird¹, Christine Stevens¹, James T Robinson¹, Moran N Cabili^{1,5}, Irit Gat-Viks^{1,6}, Edward Kelliher¹, Riza Daza¹, Matthew DeFelice¹, Helena Hůlková³, Jana Sovová³, Petr Vylet'al³, Corinne Antignac^{7–9}, Mitchell Guttman¹, Robert E Handsaker^{1,10}, Danielle Perrin¹, Scott Steelman¹, Snaevar Sigurdsson¹, Steven J Scheinman¹¹, Carrie Sougnez¹, Kristian Cibulskis¹, Melissa Parkin¹, Todd Green¹, Elizabeth Rossin¹, Michael C Zody¹, Ramnik J Xavier^{1,12}, Martin R Pollak^{13,14}, Seth L Alper^{13,14}, Kerstin Lindblad-Toh^{1,15}, Stacey Gabriel¹, P Suzanne Hart¹⁶, Aviv Regev¹, Chad Nusbaum¹, Stanislav Kmoch³, Anthony J Bleyer^{17,18}, Eric S Lander^{1,18} & Mark J Daly^{1,2,18}

MUC1

- MUC1 is a membraneanchored mucoprotein
- Best known in cancer progression
- Expressed in secretory epithelium
- Contains a VNTR unit for glycosylation

Amino terminus

Extra C in Patient OK #563 Causes Frameshift

v	T	s	A	P	D	T	R	P	A	P	G	s	T	A	P	P	S	P	R
С	H	L	G	P	G	H	Q	A	G	P	G	L	H	R	P	P	S	P	R
С	H	L	G	P	G	H	Q	A	G	P	G	L	H	R	P	P	S	P	R
С	H	L	G	P	G	H	Q	A	R	P	G	L	H	R	P	P	S	P	R
С	H	L	G	P	G	H	Q	A	G	P	G	L	H	R	P	P	S	P	R
C	H	L	G	P	G	E	Q	A	G	P	G	L	H	R	A	R	S	P	R
C	H	L	G	P	G	E	Q	A	G	P	G	L	H	R	A	R	S	P	R
C	H	L	G	P	G	E	Q	A	G	P	G	L	H	R	A	R	S	P	R
С	H	L	G	P	G	E	Q	A	G	P	G	L	H	R	A	R	S	P	R
С	Н	L	G	P	G	E	Q	A	G	P	G	L	Н	R	P	P	S	P	R

MUC1 Mutation

- Results in addition of a cytosine to 7 cytosines
- Creation of a new repetitive unit that repeats a unique number of times for each family
- Self termination
- Cytosolic unit is not created

Mutant MUC1 protein

Theoretical Affect of MUC1 insertion

- Mutation is in the VNTR unit
- Causes a frameshift, resulting in VNTR truncation and creation of a neopeptide
- Neopeptide appears to be improperly processed in the cytoplasm
- Leads to apoptosis and slow, progressive tubular cell death

Dr. Stan Kmoch, Charles Medical School,

Normal and Mutant MUC1 Immunostaining by Stan Kmoch, Ph.D.

Mutant MUC1 and Breast Tissue by Stan Kmoch

Genotyping Assay

- Specific for c nucleotide insertion
- These samples are being analyzed at the Broad.
- Samples are sent to me, I put them in a plate and send to the Broad.
- Samples should be de-identified.
- There have been problems in getting the testing done. There is a backlog.

Development of Genotyping Assay

- 21 additional potential families identified
 - 18 families had the insertion
- All 24 families to date have the same type of mutation
- We have subsequently identified another
 20 families with the same type of mutation
- Update: now approximately 50 families with MCKD1 mutations

ESRD According to Family

MUC1 I HATE YOU

- The VNTR is large and EXTREMELY difficult to work with.
- 10 years to find the gene
- Huge difficulties with antibodies
- Difficulties with transfection
- Difficulties with mouse development
- The disease is entirely nonspecific and variable in presentation.

- We have been referred 500 families
- Obtained samples in 164 families.
- UMOD 51
- MU1 32
- REN 5
- I believe about 10 to 20% of ADTKD is unexplained.

Stan Kmoch