

Zhi-Hong Liu, MD, PhD

- Academician of Chinese Academy of Engineering;
 Dean of Nanjing University School of Medicine;
 Director of National Clinical Research Center of
 Kidney Disease, Jinling Hospital, Nanjing
 University School of Medicine; Councilor of
 International Society of Nephrology (ISN).
- ➤ She has published 600 articles, edited 4 books on kidney disease, and contributed chapters to the textbooks on nephrology. She is the chief scientist of the National Basic Research Program of China (973 Program), and was honored with the National Science and Technology Progress Award of China.

Clinical Practice of IgA Nephropathy and Lupus Nephritis in China

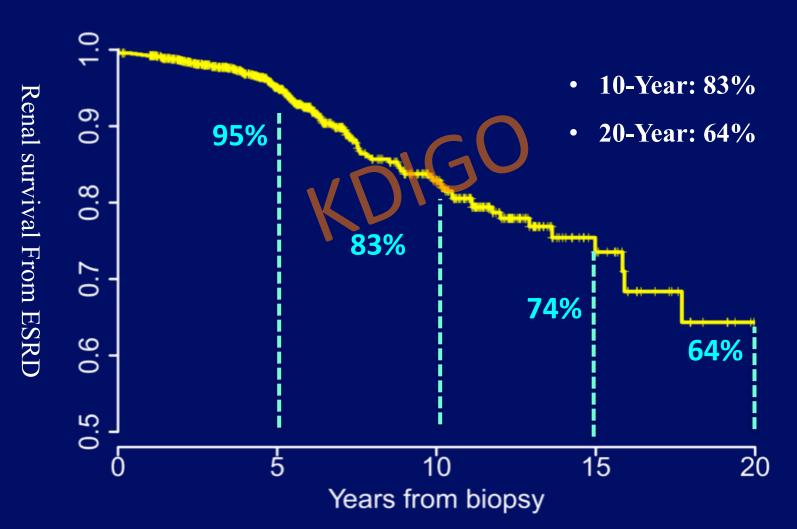
Zhi-Hong Liu

National Clinical Research Center of Kidney Diseases
Jinling Hospital
Nanjing University School of Medicine

Primary Glomerulonephritis

(n=18813, 2000-2010, Nanjing)

	n	%
IgAN	8580	45.61
FSGS	2400	12.87
MN	2422	12.76
IgMN	240	1.28
MPGN	242	1.29
EnPGN	213	1.13

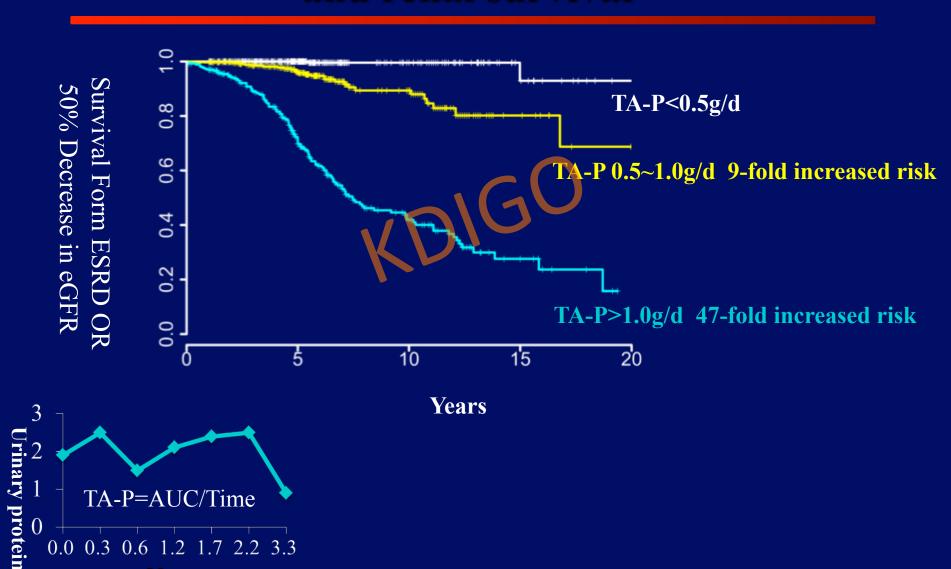

Secondary glomerular disease

(n=5162:2000-2010)

	n	%
Lupus Nephritis	2970	57.53
Hernch-Schonlein purpura	1784	34.56
Systemic Vasculitis	228	4.42
HUS/TTP	69	1.34
Rheumatoid arthritis	31	0.6
Sjögren's syndrome	80	1.55

- A frequently progressive form of glomerular diseases, exhibiting diverse renal pathology and clinical expression
- Who develops persistent and progressive disease? How can they best be identified early in the course of disease? (Pathology/Clinical)
- Facilitate the identification of the features that may predict response to specific treatments, and refine recruitment to clinical trials by their risk of progression

Renal survival of Chinese Patients with IgAN (1155 Cases)



WeiBo Le, Zhihong Liu, et al Nephrol Dial Transplant (2012) 27: 1479–1485

Five key determinants of renal survival in IgAN

	Multivariate Cox regression	
	HR(95% CI)	P
Urinary protein>1.0g/d	3.3(2.2-4.9)	< 0.001
Hypertension (>140/90mmHg)	1.9(1.3-2.7)	< 0.001
eGFR<60ml/min per 1.73m ²	2.6(1.4-2.8)	< 0.001
Hypoalbuminemia	2.0(1.4-2.8)	< 0.001
Hyperuricemia	1.8(1.2-2.6)	0.002

Time-average proteinuria (TA-P) and renal survival

The predictors of renal survival from data during the Follow-up period

Predictors	Univariate Cox	regression	MultivariateCox 1	regression ^{\(\Delta\)}
Predictors	HR(95% CI)	P Value	HR(95% CI)	P Value
TA-P	1.8(1.7-1.9)	<0.001	1.8(1.6-1.9)	<0.001
TA-MAP	1.04(1.03-1.06)	< 0.001	1.03(1.01-1.04)	< 0.001
TA-RBC	1.3 (1.1-1.7)	0.01	2.1 (1.6-2.7)	< 0.001

TA-P: Time-average proteinuria

TA-MAP: Time-average mean arterial blood pressure

TA-RBC: Time-average hematuria

The Oxford Classification of IgA Nephropathy

Present in ≤50% of the glomeruli	MO	
Present in >50% of the glomeruli	M1	
Segmental glomerulosclerosis		
Absent	S0	
Present	S1	
Endocapillary hypercellularity	1000	
Absent	EO	
Present	E1	
Tubular atrophy/interstitial fibrosis		
0-25% of cortical area	ТО	
26-50% of cortical area	T1	
>50% of cortical area	T2	

Permission obtained from Nature Publishing Group Ltd © Cattran, D. C. et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. *Kidney Int.* **76**, 534–545 (2009).

Original Investigation

A Multicenter Application and Evaluation of the Oxford Classification of IgA Nephropathy in Adult Chinese Patients

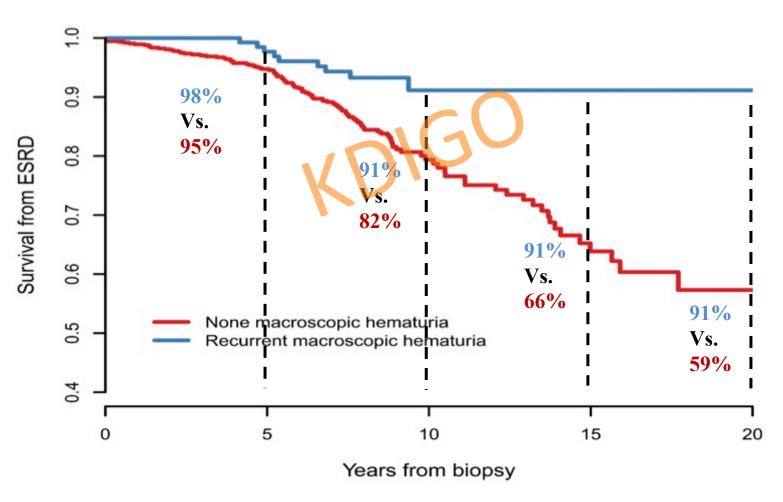
Cai-Hong Zeng, PhD, ^{1*} Weibo Le, MD, ^{1*} Zhaohui Ni, PhD, ² Minfang Zhang, PhD, ² Lining Miao, PhD, ³ Ping Luo, PhD, ³ Rong Wang, MD, ⁴ Zhimei Lv, PhD, ⁴ Jianghua Chen, MD, ⁵ Jiong Tian, PhD, ⁵ Nan Chen, PhD, ⁶ Xiaoxia Pan, MD, ⁶ Ping Fu, PhD, ⁷ Zhangxue Hu, MD, ⁷ Lining Wang, MD, ⁸ Qiuling Fan, PhD, ⁸ Hongguang Zheng, PhD, ⁹ Dewei Zhang, MD, ⁹ Yaping Wang, MD, ¹⁰ Yanhong Huo, MD, ¹⁰ Hongli Lin, MD, ¹¹ Shuni Chen, MS, ¹¹ Shiren Sun, PhD, ¹² Yanxia Wang, MD, ¹⁶ Zhangsuo Liu, PhD, ¹³ Dong Liu, MD, ¹³ Lu Ma, MD, ¹⁴ Tao Pan, MD, ¹⁴ Aiping Zhang, MD, ¹⁵ Xiaoyu Jiang, MD, ¹⁵ Changying Xing, PhD, ¹⁶ Bing Sun, PhD, ¹⁶ Qiaoling Zhou, MD, ¹⁷ Wenbing Tang, MD, ¹⁷ Fuyou Liu, MS, ¹⁸ Yinghong Liu, PhD, ¹⁸ Shaoshan Liang, MD, ¹ Feng Xu, MD, ¹ Qian Huang, MD, ¹ Hongbing Shen, PhD, ¹⁹ Jianming Wang, PhD, ¹⁹ Yu Shyr, PhD, ²⁰ Sharon Phillips, MS, ²⁰ Stéphan Trojanov, MD, ²¹ Agnes Fogo, MD, ²² and Zhi-Hong Liu, MD¹

Background: The Oxford classification of immunoglobulin A (IgA) nephropathy (IgAN) provides a histopathologic grading system that is associated with kidney disease outcomes independent of clinical features. We evaluated the Oxford IgAN classification in a large cohort of patients from China.

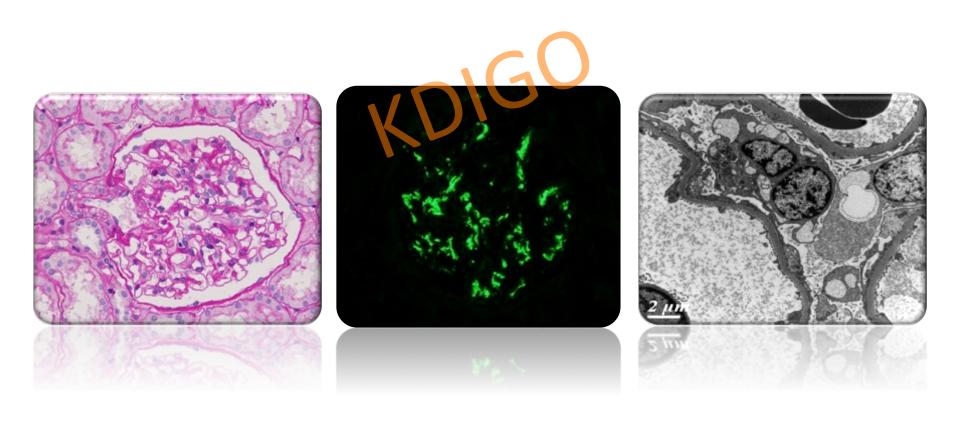
Study Design: Retrospective study.

Setting & Participants: 1,026 adults with IgAN from 18 referral centers in China. Inclusion criteria and

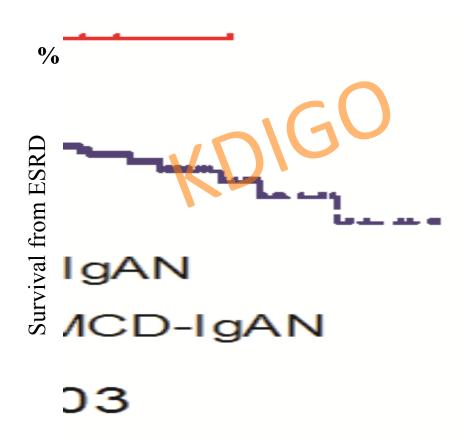
A Multi-center Validation of the Oxford Classification of IgAN in Chinese patients


We confirmed the associations of mesangial
hypercellularity (M) and tubular atrophy/interstitial
fibrosis (T) with kidney disease outcomes.

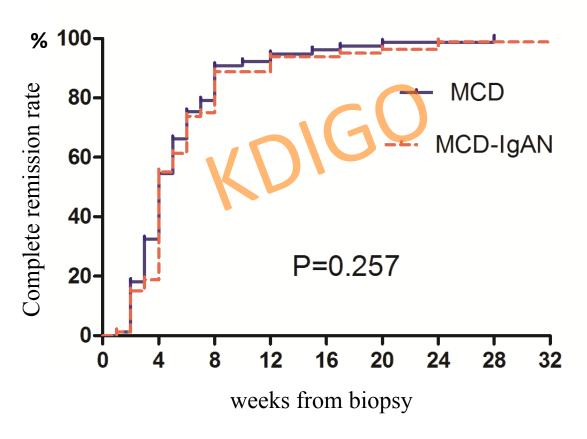
We did not find the associations between the lesion of S,E,
C, and N and disease outcomes.


IgA Nephropathy

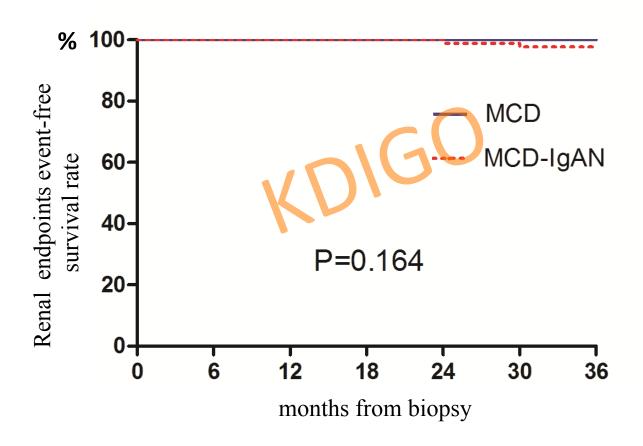
- > IgAN with recurrent macroscopic hematuria
- > IgAN with minimal change disease
- > IgAN in elderly patients


Long-term outcome of IgAN with recurrent macroscopic hematuria

IgAN with minimal change disease



Long-term outcome of IgAN with minimal change disease


Years from biopsy

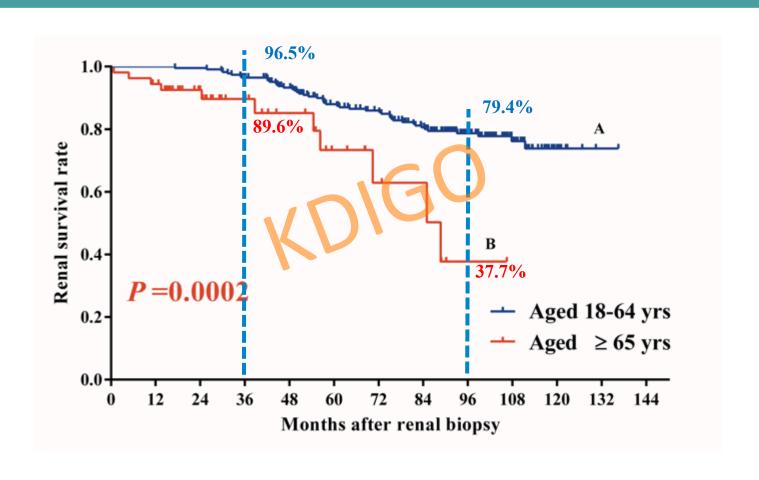
Response to steroid treatment of IgAN patients with minimal change disease

MCD: Minimal change disease (n=77) MCD-IgAN: IgAN with minimal change disease (n=80)

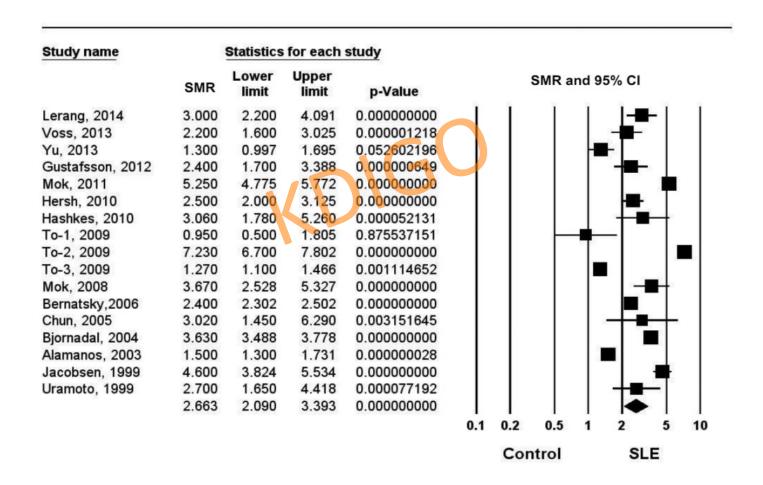
Comparison of long-term outcome between patients with MCD-IgAN and MCD

MCD: Minimal change disease (n=77) MCD-IgAN: IgAN with minimal change disease (n=80)

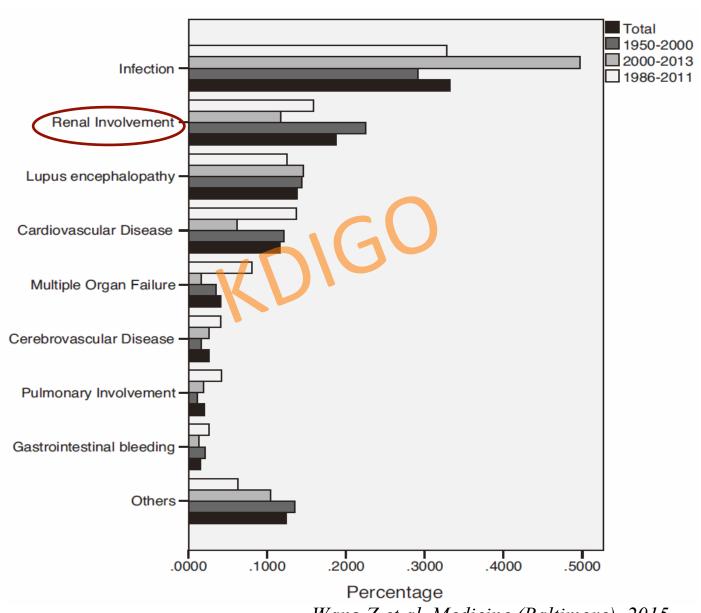
The spectrum of biopsy-proven kidney diseases in elderly Chinese patients


Bo Jin*, Caihong Zeng*, Yongchun Ge, Weibo Le, Honglang Xie, Hao Chen, Shaoshan Liang, Feng Xu, Song Jiang and Zhihong Liu

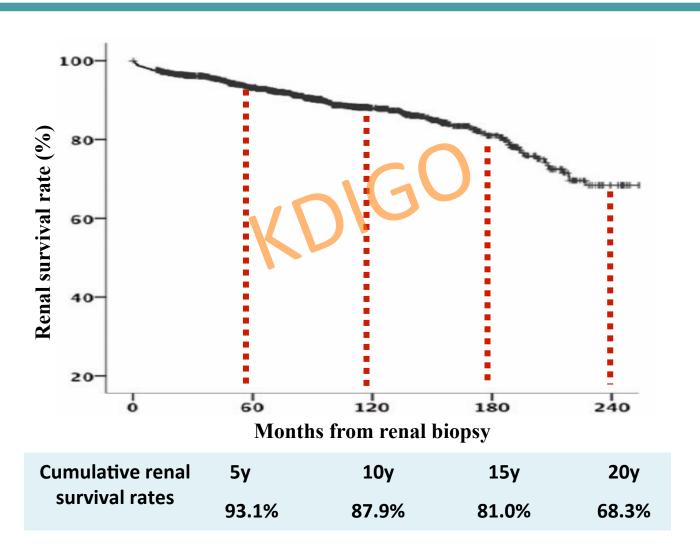
National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China


Table 1. Classification of renal diseases based on renal biopsies in elderly patients

	Number of cases	%
Primary glomerular disease	459	53.94
MN	245	28.79
IgAN	82	9.64
MCD	41	4.82
FSGS	40	4.70
MsPGN	24	2.82
IgMN	9	1.06
MPGN	7	0.82


Renal survive in IgA nephropathy between elderly and non-elderly patients

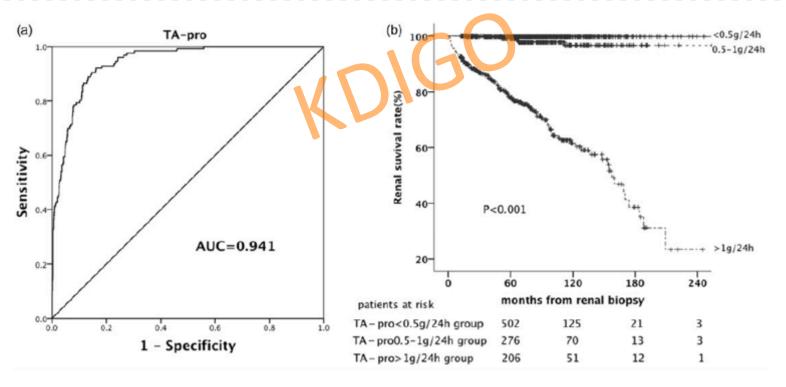
All-cause SMR was significantly increased 2.6-fold in patients with SLE



Death Causes of SLE in China

Wang Z et al, Medicine (Baltimore). 2015

Cumulative renal survival rates in patients with LN (n=1814)

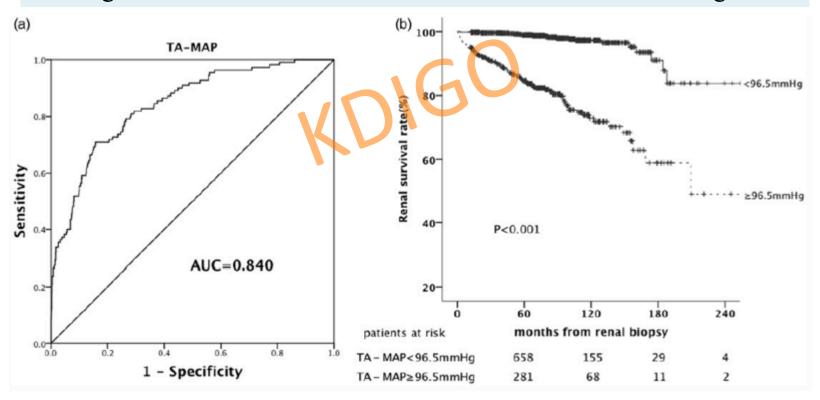


Independent risk factors for ESRD in LN (n=1814)

	Univariate		Multivariate	
	HR (95%CI)	P	HR (95%CI)	P
Gender ^a	2.181 (1.580-3.011)	< 0.001	2.166 (1.530-3.066)	< 0.001
LN duration (months)	1.005 (1.002-1.009)	0.002	1.006 (1.002-1.009)	0.002
Mean arterial pressure (mmHg)	1.027 (1.018-1.037)	< 0.001	1.016 (1.006-1.026)	0.002
24-h urinary protein (g/24 h)	1.084 (1.045-1.124)	< 0.001	1.042 (1.002-1.084)	0.039
Serum creatinine (mg/dl) b	1.622 (1.540-1.709)	< 0.001	1.509 (1.409-1.617)	< 0.001
Haemoglobin (g/dl) b	0.788 (0.741-0.837)	< 0.001	0.898 (0.840-0.961)	0.002
Serum complement C4 (g/l)	3.044 (1.278-7.250)	0.012	2.962 (1.268-6.922)	0.012

The time-average proteinuria (TA-Pro)

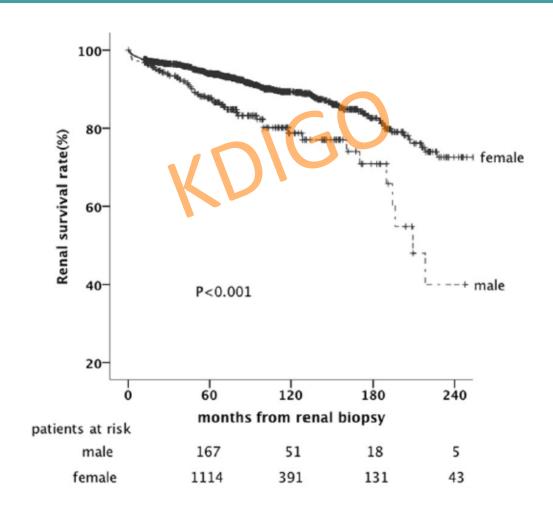
The patients with TA-Pro 0.5-1g/24 h and TA-Pro >1 g/24 h were associated with a **12.567-fold and 237.698-fold** higher risk for ESRD than those with TA-Pro<0.5 g/24 h, respectively

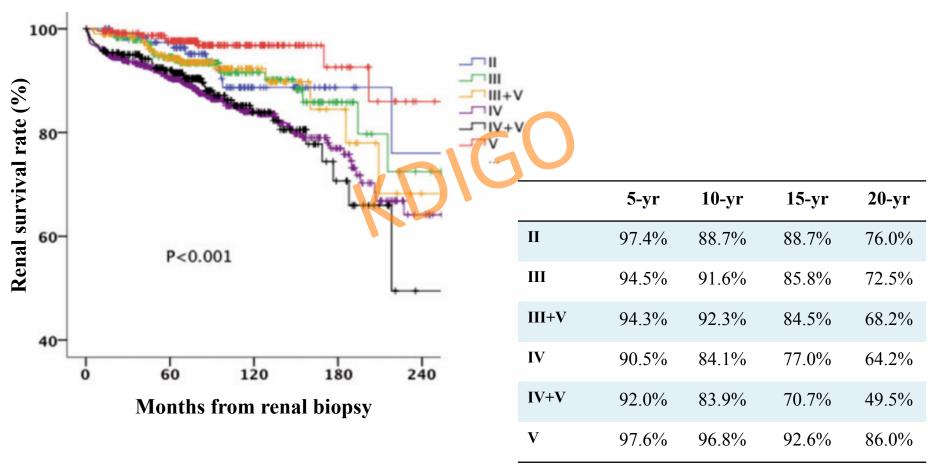


Evaluation of TA-Pro values for discriminating the patients with ESRD from the patients without ESRD

Renal survival rates in various groups

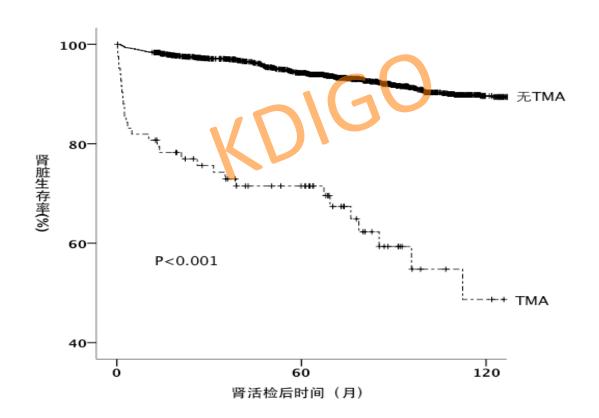
The time average mean arterial pressure (TA-MAP)


The patients with TA-MAP ≥96.5mmHg were associated with a **10.045-fold** higher risk for ESRD than those with TA-MAP<96.5 mmHg

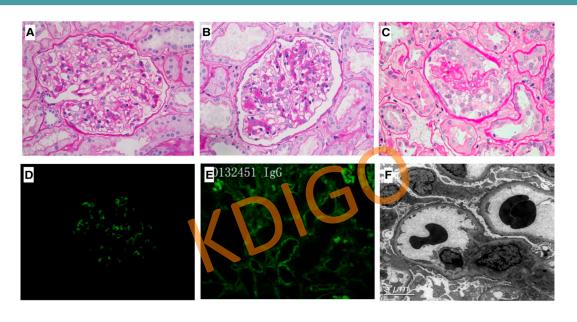

Evaluation of the TA-MAP values for discriminating the patients with ESRD from the patients without ESRD

Renal survival rates in various groups

The male patients were associated with a 2.181-fold higher risk for ESRD than the female patients



Cumulative renal survival rates in different histological classes (n=1814)



The 2003 ISN/RPS classification

The incidence of TMA in LN: 4.6% LN with TMA were associated with a 5.7-fold higher risk for ESRD than those without TMA

Patients with podocytopathy showed a good response to steroid therapy and good outcomes

Treatment Response and Outcomes	Total (<i>n</i> =50)	MCD (<i>n</i> =13)	MsP (<i>n</i> =28)	FSGS (<i>n</i> =9)	P values
Treatment response					0.001
Complete remission	38 (76.0)	12 (92.3)	24 (85.7)	2 (22.2)	
Partial remission	9 (18.0)	1 (7.7)	3 (10.7)	5 (55.6)	
No response	3 (6.0)	Ò	1 (3.6)	2 (22.2)	
Time to remission (weeks)	4(2, 8)	4 (2, 8)	4(2,7)	8 (5, 10)	0.25
Relapse	28 (56.0)	7 (53.8)	15 (53.6)	6 (66.7)	0.86
Histologic transition	6/13 (46.2)	1/5 (20.0)	3/5 (60.0)	2/3 (66.7)	0.48

Considerable interethnic variation is evident in the efficacy and tolerability of the various immunosuppressive regimens, which necessitates individualized treatment and comparison of the efficacy and side effects across different ethnic groups.

Evidence origin from Chine in KDIGO GN Guideline(2012)

	n	RCT	Retrospective
IgAN	3	1	2
SRNS	1	1	0
MCD	0	0	0
MN	2 3	1	1
FSGS	0	0	0
$\mathbf{L}\mathbf{N}$	2	2	0
MPGN	0	0	0
HSPN		0	0
anti-GBM disease	1	0	1
ANCA vasculitis	1	1	0
Total	10	6	4

Published Randomized Controlled Trial from China during 2012 to 2016

Diseases	RCT
IgAN	3 5
MN	4
FSGS/MCD	4
LN	5
AAV	1
HSPN	2
Total	21

Original Research

Annals of Internal Medicine

Multitarget Therapy for Induction Treatment of Lupus Nephritis

A Randomized Trial

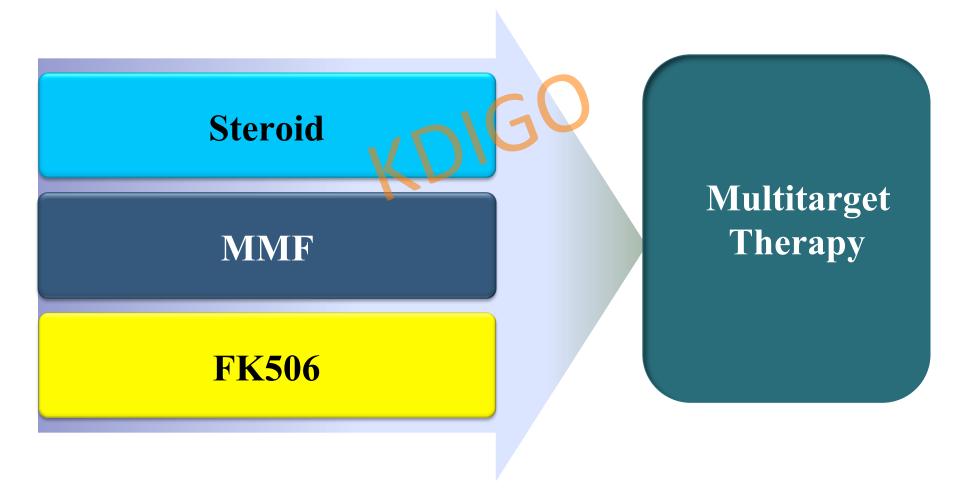
Zhihong Liu, MD; Haitao Zhang, MD; Zhangsuo Liu, MD; Changying Xing, PhD; Ping Fu, MD; Zhaohui Ni, MD; Jianghua Chen, MD; Hongli Lin, MD; Fuyou Liu, MD; Yongcheng He, MD; Yani He, MD; Lining Miao, MD; Nan Chen, MD; Ying Li, MD; Yong Gu, MD; Wei Shi, MD; Weixin Hu, MD; Zhengzhao Liu, MD; Hao Bao, MD; Caihong Zeng, PhD; and Minlin Zhou, MD

Background: Treatment of lupus nephritis (LN) remains challenging.

Objective: To assess the efficacy and safety of a multitarget therapy consisting of tacrolimus, mycophenolate mofetil, and steroid compared with intravenous cyclophosphamide and steroid as induction therapy for LN.

Design: 24-week randomized, open-label, multicenter study. (ClinicalTrials.gov: NCT00876616)

Setting: 26 renal centers in China.


group (25.6%) showed complete remission (difference, 20.3 percentage points [95% CI, 10.0 to 30.6 percentage points]; P < 0.001). The overall response incidence was higher in the multitarget group than in the intravenous cyclophosphamide group (83.5% vs. 63.0%; difference, 20.4 percentage points [CI, 10.3 to 30.6 percentage points]; P < 0.001), and the median time to overall response was shorter in the multitarget group (difference, -4.1 weeks [CI, -7.9 to -2.1 weeks]). Incidence of adverse events did not differ between the multitarget and intravenous cyclophosphamide groups (50.3% [91 of 181] vs. 52.5% [95 of 181]).

Therapeutic goals for patients with lupus nephritis

- > To achieve prompt complete remission
- > To avoid renal flare, and chronic renal impairment
- > To fulfill these objectives with minimal toxicity

Multiple drugs in lower dose

maximal the efficacy, minimal the side effects

Inclusion criteria

- ➤ Age 18-65 years old with either gender
- > Fullfilled the criteria of the ACR for SLE
- ➤ Biopsy proved Class III/IV/V/III+V/IV +V LN
- > SLE-DAI>10
- ➤ Chronicity index(CI)≤ 3
- ➤ Proteinuria ≥1.5g/24h, with or without activity urinary sediment
- ➤ Serum creatinine ≤3.0mg/dl (265.2umol/L)
- > Provided written informed consent

Interventions

Multi-target Group FK506: 4mg/d

MMF: 1.0g/d

Methylprednisolone: IV. 0.5g/d×3;

Pred. 0.6mg/kg/d ×4wks;

gradually tapered to 10mg/d

IVCY Group (control) IVCY: 0.75g/m2/BSA/mo×6

Methylprednisolone : IV. $0.5g/d\times3$;

Pred. 0.6mg/kg/d ×4wks;

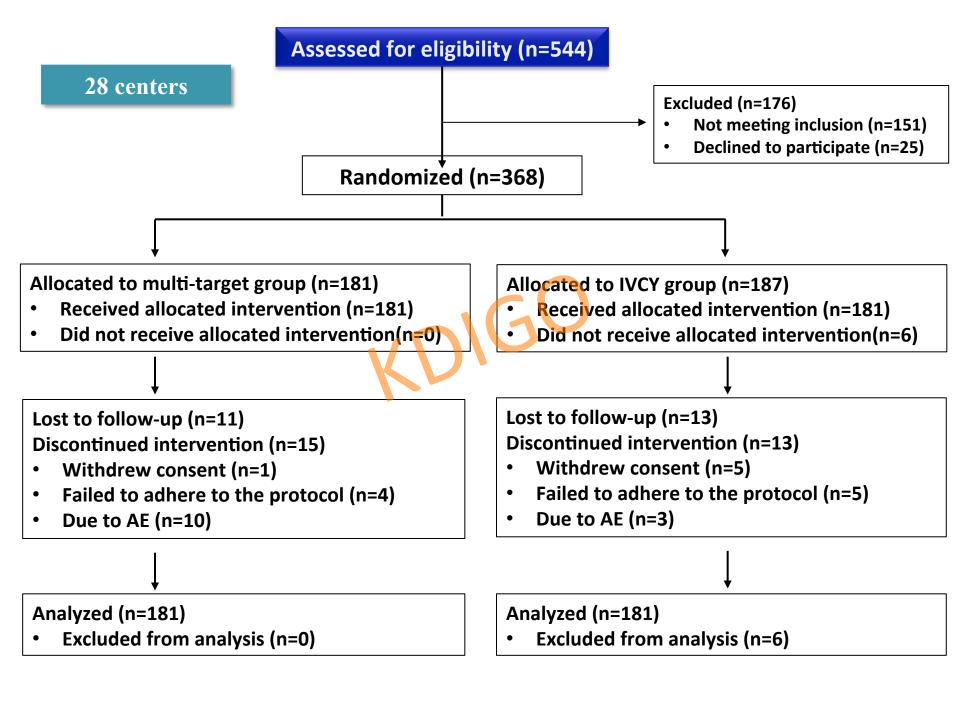
gradually tapered to 10mg/d

Outcomes (The primary end point)

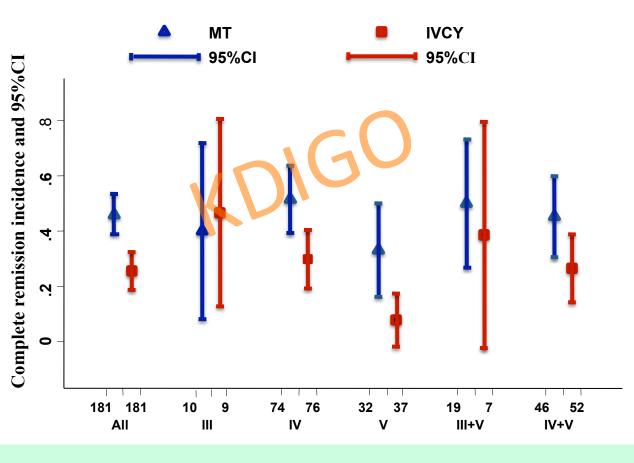
Complete remission rate after 24 weeks

Complete remission(CR):

- > Proteinuria < 0.4 g/24 h
- Without active urinary sediment
- ➤ Serum albumin ≥35 g/L
- ➤ Serum creatinine normal or increase < 15% above baseline values

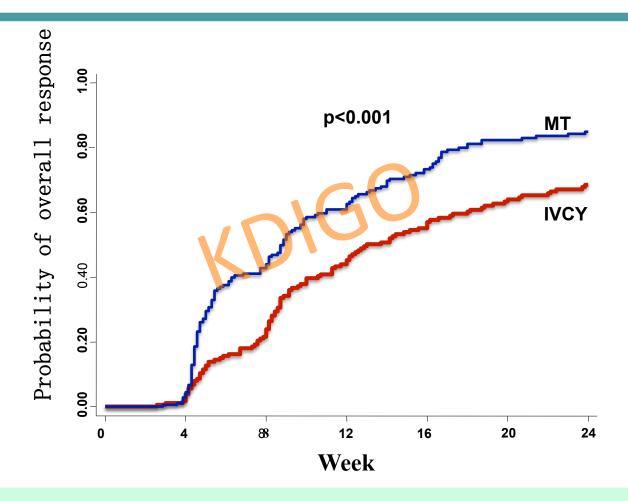

The partial remission rate (PR)

- > 50% improvement in proteinuria
- > urine protein <3.5g/24h,
- > serum albumin ≥30 g/L,
- > SCr normal or < 30% above baseline Scr


Overall remission: CR+PR

Outcomes (The secondary endpoint)

- > Overall response rate and the time to response
- > Response rates in pathologic subgroups of patients
- > 24 hour urinary protein excretion rate
- > Changes of serum albumin and creatinine
- Disease activity
- > The adverse events



CR Incidence at 24 Weeks in All Patients With LN and per Pathologic Class Subgroup by Treatment (MT or IVCY)

CR : MT group 45.9% IVCY group 25.6%, (P < 0.001)

Probability of achieving overall remission

overall remission: MT group 85.0%

IVCY group 68.6% (P < 0.001)

The incidence of complete remission in pathologic class subgroup

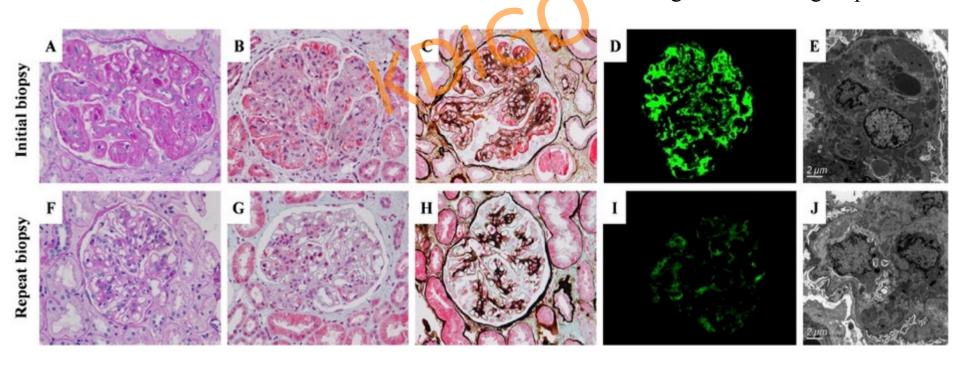
The incidence of complete remission was higher in the multitarget group than in the IVCY group among patients with class IV LN (51.5% vs. 29.9%); class VLN (33.1% vs. 7.8%) and class IV+V LN (45.2% vs. 26.5%).

The multitarget therapy may be a valuable treatment approach in patients with class IV (proliferative LN) and class V (membranous LN) lesions.

Median time to overall response

Median time to overall response was **8.9 weeks** (CI, 7.7 to 9.9 weeks) in the multitarget group and **13.0** weeks (CI, 11.3 to 16.1 weeks) in the IVCY group (difference, - 4.1 weeks [CI, - 7.9 to - 2.1 weeks]).

Other Secondary End Points


Change From Baseline to Week 24	Multitarget (n = 181)	IVCY (n = 181)	Difference (95% CI)	P value
Proteinuria, mean (SD), g/d,	-3.38 (2.77)	-2.68 (2.69)	-0.70 (-1.31 to -0.09)	0.025
Albumin mean (SD), g/L,	15.15 (7.11)	13.51 (6.84)	1.63 (0.07 to 3.19)	0.040
Serum creatinine mean (SD), μmol/L	-6.33 (26.39)	-9.92 (24.68)	3.59 (-2.12 to 9.30)	0.22
eGFR mean (SD), mL/min per 1.73 m ²	5.39 (37.20)	9.35 (33.63)	-3.95 (-11.88 to 3.97)	0.33
SLE-DAI mean (SD)	-11.01 (6.07)	-8.55 (5.05)	-2.46 (-3.77 to -1.15)	< 0.001
C3 mean (SD), g/L	0.38 (0.30)	0.31 (0.25)	0.08 (0.01 to 0.14)	0.022
C4 mean (SD), g/L	0.08 (0.19)	0.06 (0.15)	0.02 (-0.02 to 0.06)	0.37
Negative conversion ratio of anti-dsDNA from baseline to 24 wk, n(%)	50 (64.1)	45 (52.3)	11.78 (3.59 to 26.71)	0.155

Both treatment groups had stable renal function and did not differ with respect to serum creatinine and eGFR changes

Repeated Renal Biopsy

Variable,	Multitarget (n = 14)		IVCY $(n = 9)$	
median (25th,	Initial	Repeat	Initial	Repeat
75th percentiles)	Biopsy	Biopsy	Biopsy	Biopsy
Activity index	11.5 (7, 16)	2 (1,3) †	11 (5, 15)	3 (2, 4);
Chronicity index	1 (0, 2)	2 (1, 2)	1 (1, 3)	3 (2, 3)

A marked reduction in the pathologic activity index in both treatment groups, with numerically more pronounced changes in the MT group

Result suggest that the multitarget therapy induces not only clinical remission but also histologic remission.

Adverse Events

Variable	Multitarget	IVCY	
variable	(n = 181), n (%)	(n = 181), n (%)	
All adverse events (include serious adverse events)	91 (50.3)	95 (52.5)	-
Infections	51 (28.2)	46 (25.4)	
Upper gastrointestinal symptoms:	7 (3.9)	37 (20.4)	
Diarrhea	14 (7.7)	6 (3.3)	
Liver dysfunction	1 (0.6)	6 (3.3)	
Hyperglycemia	5 (2.8)	4 (2.2)	
New-onset hypertension	10 (5.5)	4 (2.2)	
Myalgia	2 (1.1)	0	
Headache	3 (1.7)	0	
Alopecia	6 (3.3)	9 (5.0)	
Leukopenia†	1 (0.6)	12 (6.6)	
Tremor†	8 (4.4)	1 (0.6)	
Menstrual disorder	2 (1.1)	7 (3.9)	
Gingival hyperplasia	2 (1.1)	0	
Osteonecrosis	1 (0.6)	0	
Arthralgia	3 (1.7)	1 (0.6)	
Doubling of serum creatinine level	2 (1.1)	0	† P <
Thrombocytopenia	1 (0.6)	0	‡ P <
Others	20 (11.0)	11 (6.1)	

Hong Zhang and Vlado Perkovic on behalf of the TESTING study group

Late Breaking Clinical Trials

ERA-EDTA Meeting, Vienna 2016

TESTING trial

• Aim:

 Long-term efficacy and safety of oral methylprednisolone on a background of RAS inhibitor therapy, in patients with IgA nephropathy at a high risk of progression

• Design:

 Investigator-initiated, international, randomized, double-blind, placebo-controlled trial

Study population

IgA nephropathy at high risk of progression:

- Biopsy proven IgA nephropathy
- eGFR 20-120 mls/min/1.73 m²
- Proteinuria > 1g/day after at least 3 months of maximum labelled or tolerated RAS blockade

Intervention

Methylprednisolone or Placebo (double blind)

- 0.6-0.8 mg/kg/day (maximal 48mg/day) for 2 months
- Tapered at 8mg daily/month and stopped within 6-8 months

Background therapy

- Optimal blood pressure control target <130/80mmHg
- ACE inhibitors or ARBs adjusted to the maximum labeled or tolerated dose

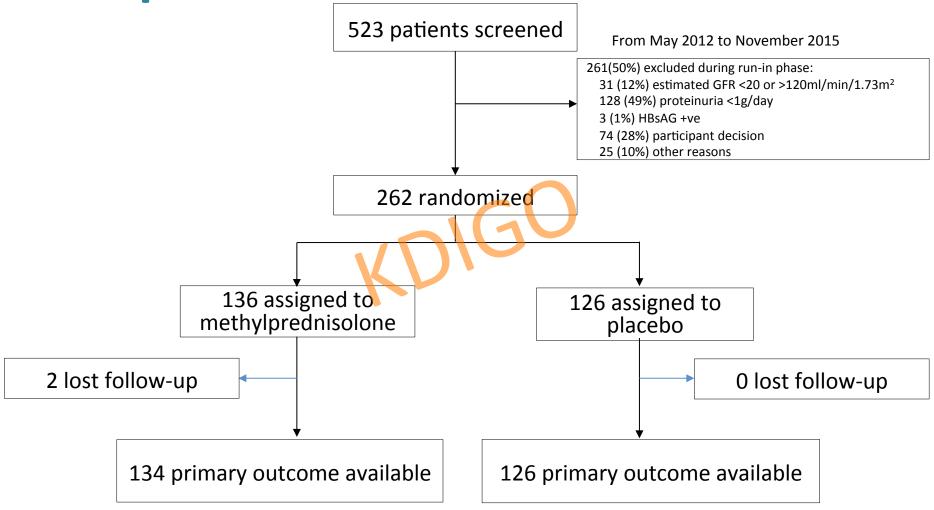
Efficacy outcomes

Primary end points:

 Composite of a persistent 40% decrease in eGFR, ESKD, or death due to kidney disease

Secondary end points:

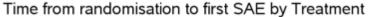
- 40% decrease in eGFR, ESKD or all-cause death
- 50% decrease in eGFR, ESKD or all-cause death
- Each of 40% decrease in eGFR, ESKD or all-cause death
- Annual rate of eGFR decline
- Proteinuria reduction

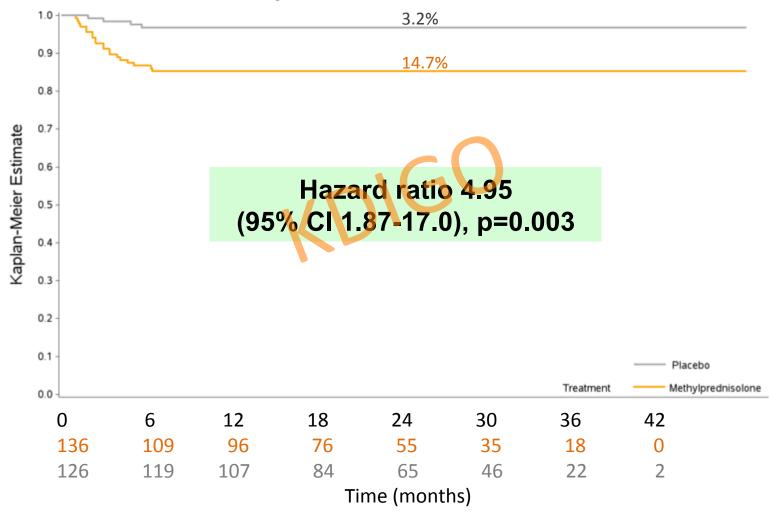

IDMC communication

November, 2015

SC decision in response

- Discontinue study treatment
- Continue follow-up of all participants off treatment
- Analyse and report results to date
 - All participants recalled for a study visit
 - Transitional study analysis

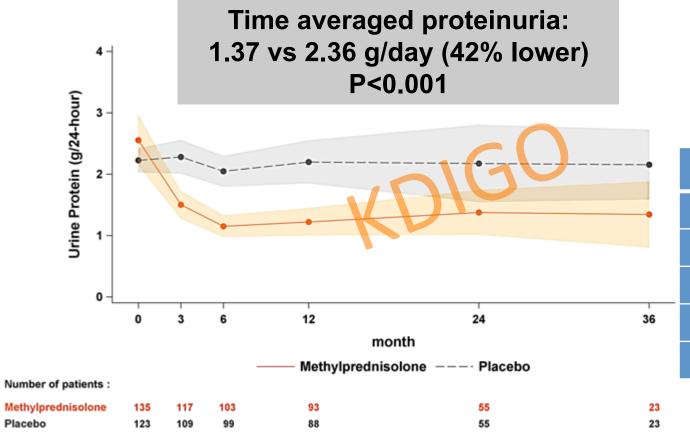

Trial profile



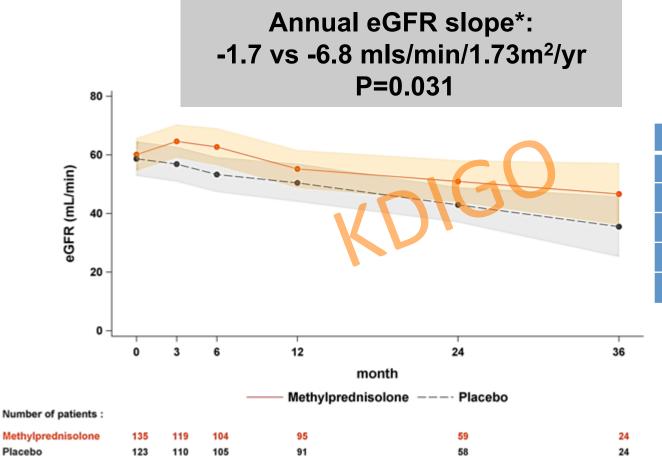
Baseline characteristics

Characteristics Methylprednisolone group		Placebo group	
	(N=136)	(N=126)	
Age - yr	38.6 ±11.5	38.6±10.7	
Female sex – no. (%)	50 (36.8%)	46 (36.5)	
Race – no. (%)			
Chinese	130 (95.6)	121(96.0)	
Caucasian	5 (3.7)	3 (2.4)	
South-East Asian	1 (0.7)	12(1.6)	
Smoker - %	34 (2 <mark>5</mark> .0)	31 (24.6)	
Body-mass index	24.4 ± 4.5	23.4 ± 3.7	
Hypertension-no.(%)	71 (52.2)	52 (41.3)	
Blood pressure - mmHg			
systolic	123.9 (14.7)	124.3 (11.6)	
diastolic	79.3 (10.5)	79.8 (9.9)	
Urine protein excretion – g/day	2.55 (2.45)	2.23 (1.11)	
Serum creatinine – mg/dl	1.5 (0.6)	1.6 (0.6)	
Estimated GFR – ml/min/1.73m ²	59.6 (24.1)	58.5 (23.1)	
Total Cholesterol – mg/dl	188.9 (39.0)	191.8 (51.1)	
Oxford histological Score			
M1 lesion – no. (%)	76 (57.6)	75 (61.0)	
E1 lesion – no. (%)	43 (31.6%)	30 (23.8%)	
S1 lesion – no. (%)	94 (71.2)	89 (72.4)	
T0/T1/T2 lesion – no. (%)	51(38.6%)/58(43.9)/23(17.4)	43(35.0)/60(48.8)/20(16.3)	
Therapy with RAS-blocking agents - %			
ACE inhibitor	83 (61.0%)	77 (61.1%)	
ARB	55 (40.4%)	49(38.9%)	

Serious adverse events

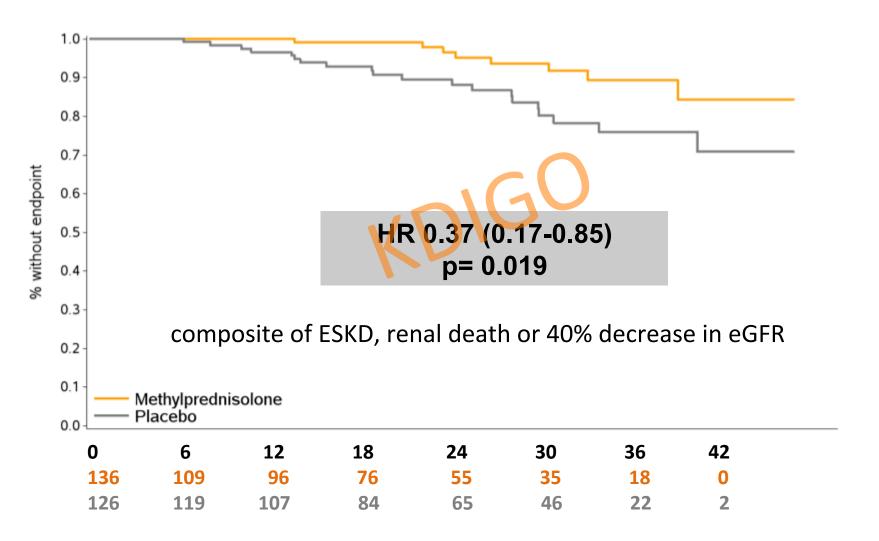


Safety outcomes


Outcome	Methylprednisol one group (N=136)	Placebo group (N=126)	P Value
Total patients with serious adverse events – no.	20	4	0.001
Serious adverse events of infection	11	0	<.001
Fatal infection	2	0	NS
Pneumocystis jirovecii pneumonia	3	0	NS
Other lung infection	2	0	NS
Septic arthritis	1	0	NS
Perianal infection	1	0	NS
Gastrointestinal serious adverse events	3	1	NS
Bone disorders			
Avascular necrosis	3	0	NS
Fracture	1	0	NS
New onset diabetes mellitus	2	3	NS

Effect on Proteinuria

Month	Mean Δ	p value
3	-0.83	<.0001
6	-1.00	<.0001
12	-1.20	<.0001
24	-1.03	<.0001
36	-0.93	0.0077


Effect on eGFR

Month	Mean Δ	p value
3	5.14	0.0019
6	6.74	<.0001
12	4.62	0.0091
24	5.43	0.0088
36	7.67	0.0092

*- defined for each individual patient using the slope from least squares linear regression of all eGFR estimates over time

Primary outcome

Conclusions

- Full dose steroid therapy was associated with significantly increased rates of serious adverse outcomes in patients with IgA nephropathy
- The results to date suggest renal benefit based on a modest number of events
- The ongoing, long-term follow-up will help to further define the balance of risks and benefits