

New Immunosuppression Horizons in Kidney Transplantation

Mumbai, India, February 9, 2014

New Immunosuppression Horizons

- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development

Initial Immunosuppression Attempts

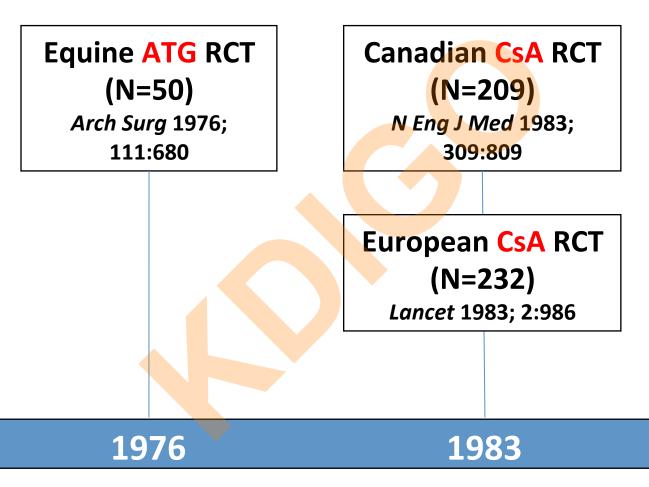
Joseph Murray used total body radiation in 14 transplants — all died.

Murray & Calne used azathioprine in 6 transplants — all died.

Murray & Calne
6-mercaptopurine
used in 2 transplants
— both died.

Murray & Calne used azathioprine & treated rejection with steroids — Melvin Doucette went home!

1958-1960

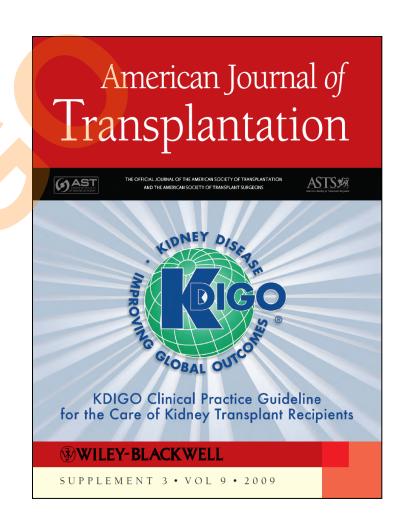

1960

1961

1962

Beginning the Era of RCTs

New Immunosuppression Horizons


- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development

KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients

- Systematic reviews by the ERT:
 1985 through January 2007
- Evidence updated through:
 November 2008
- GRADE system used
 Strength of Recommendations:
 1 or 2
 Strength of Evidence:

A, B, C, D
"Not Graded" recommendations

Question 1

A 55 year old women with ESRD from diabetes has a living donor for her 1st kidney transplant. PRA 0%; no DSA. You would use the following induction:

- A. No antibody induction
- B. IL-2 receptor antagonist
- C. Rabbit ATG
- D. Alemtuzumab
- E. Other

Question 2

A 55 year old women with ESRD from diabetes has a living donor for her 2nd kidney transplant. PRA 50%; no DSA. You would use the following induction:

- A. No antibody induction
- B. IL-2 receptor antagonist
- C. Rabbit ATG
- D. Alemtuzumab
- E. Other

Induction Therapy

- 1.2: We recommend including induction therapy with a biologic agent as part of the initial immunosuppressive regimen in KTRs. (1A)
 - 1.2.1: We recommend that an IL2-RA be the firstline induction therapy. (1B)
 - 1.2.2: We suggest using a lymphocyte-depleting agent, rather than an IL2-RA, for KTRs at high immunologic risk. (2B)

Maintenance Immunosuppression

- 2.2: We suggest that tacrolimus be the first-line CNI used. (2A)
- 2.3: We suggest that mycophenolate be the first-line antiproliferative agent. (2B)
- 2.4: We suggest that, in patients who are at low immunological risk and who receive induction therapy, corticosteroids could be discontinued during the first week after transplantation. (2B)

Maintenance Immunosuppression

- 3.2: We suggest that CNIs be continued rather than withdrawn. (2B)
- 3.3: If prednisone is being used beyond the first week after transplantation, we suggest prednisone be continued rather than withdrawn. (2C)

Treatment of Acute Cellular Rejection

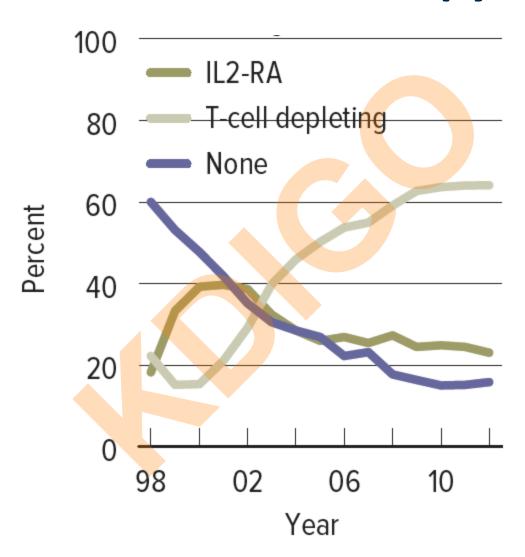
- 6.3: We recommend corticosteroids for the initial treatment of acute cellular rejection. (1D)
 - 6.3.1: We suggest adding or restoring maintenance prednisone in patients not on steroids who have a rejection episode. (2D)
 - 6.3.2: We suggest using lymphocyte-depleting antibodies or OKT3 for acute cellular rejections that do not respond to corticosteroids, and for recurrent acute cellular rejections. (2C)

Treatment of AMR

- 6.4: We suggest treating antibody-mediated acute rejection with one or more of the following alternatives, with or without corticosteroids (2C):
 - plasma exchange;
 - intravenous immunoglobulin;
 - anti-CD20 antibody;
 - lymphocyte-depleting antibody.

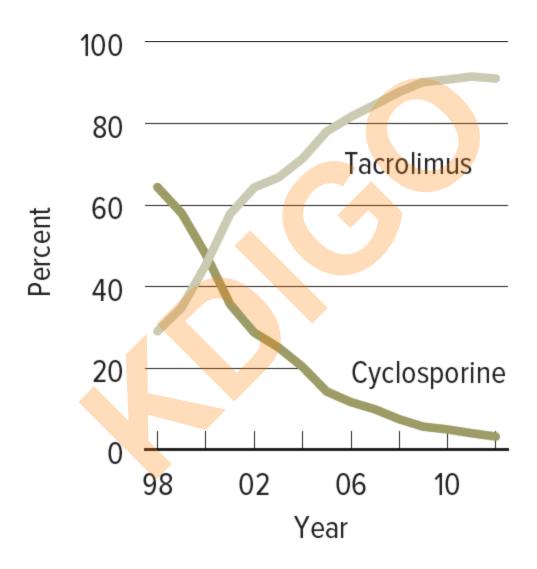
Treatment of Chronic Allograft Injury

- 7.2: For patients with CAI and histological evidence of CNI toxicity, we suggest reducing, withdrawing, or replacing the CNI. (2C)
 - 7.2.1: For patients with CAI, eGFR >40 mL/min/
 1.73 m², and urine total protein excretion
 <500 mg/g creatinine (or equivalent proteinuria by other measures), we suggest replacing the CNI with a mTORi. (2D)

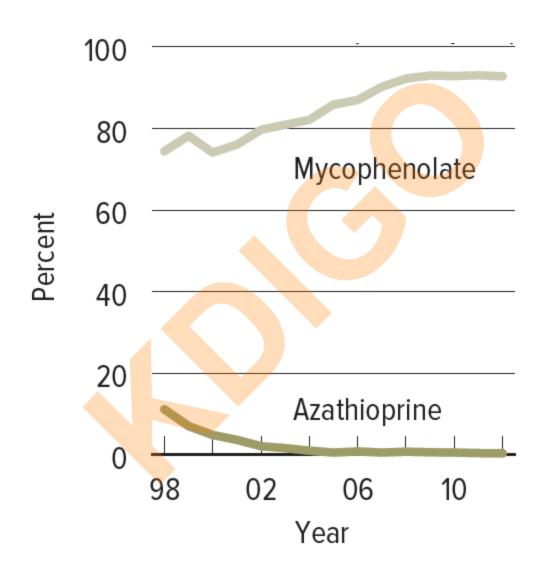


New Immunosuppression Horizons

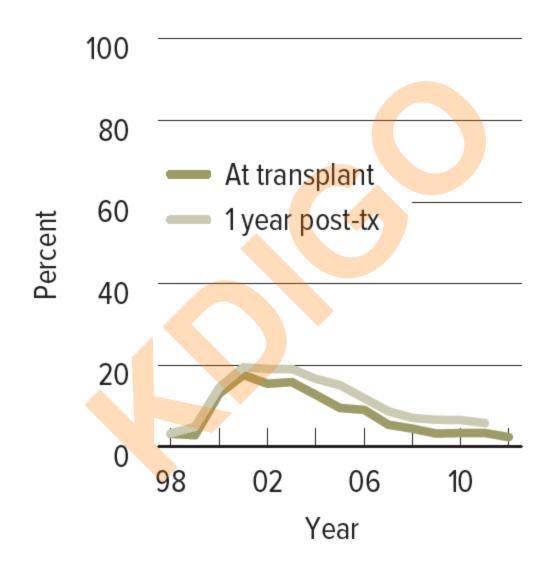
- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development



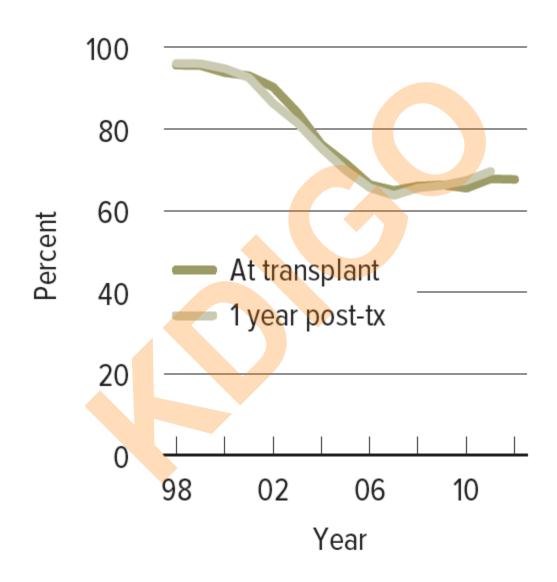
Induction Therapy



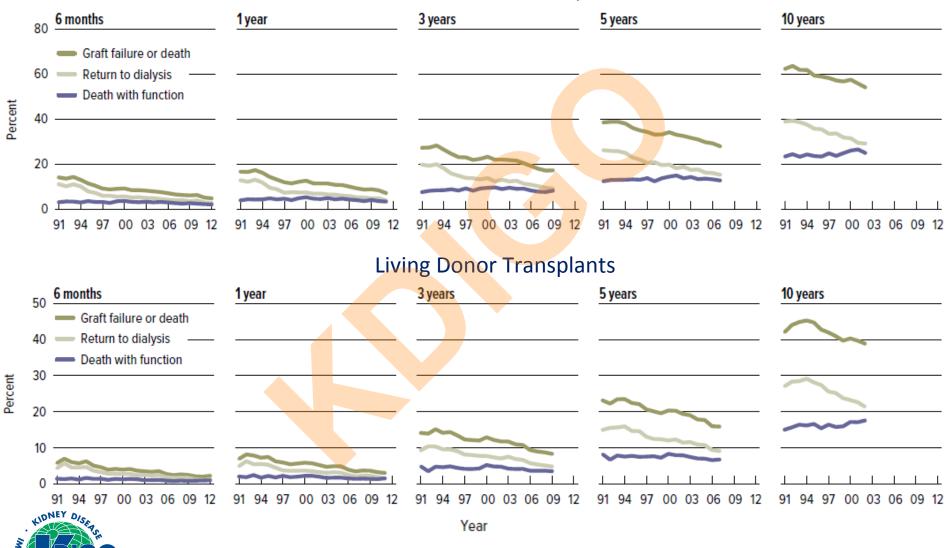
Maintenance CNI Use



Maintenance Antimetabolite Use

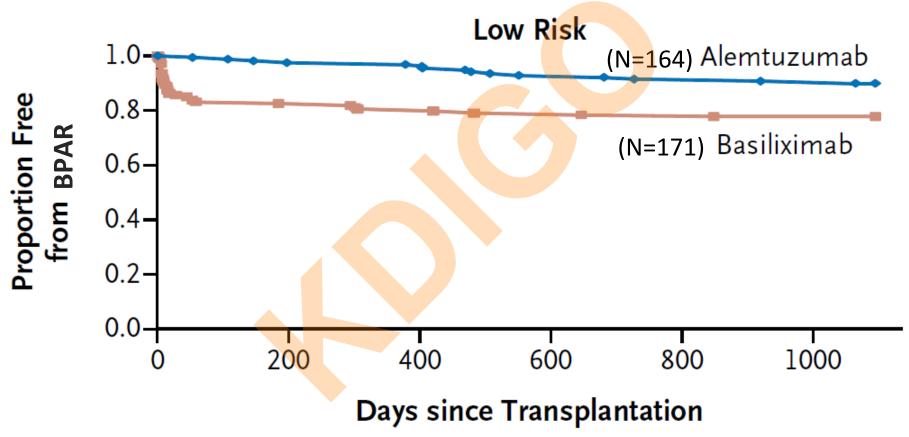


Maintenance mTOR Inhibitor Use


Maintenance Corticosteroid Use

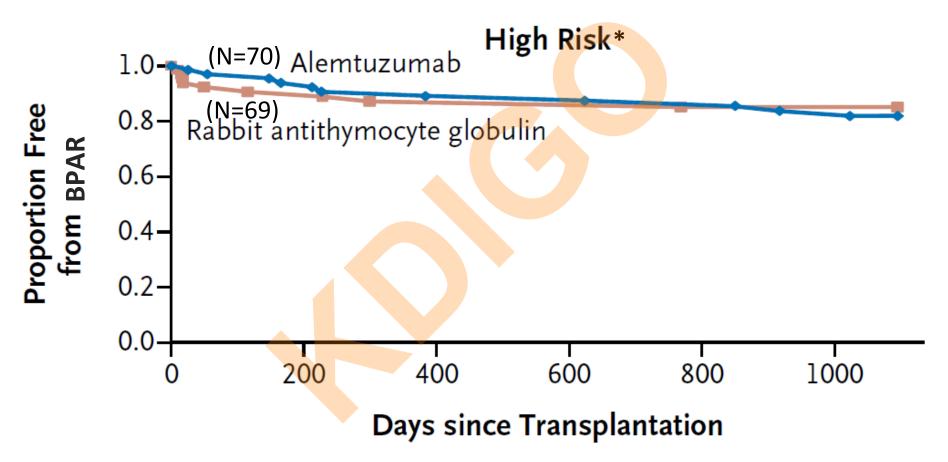
Adult US Kidney Transplant Outcomes

Deceased Donor Transplants



New Immunosuppression Horizons

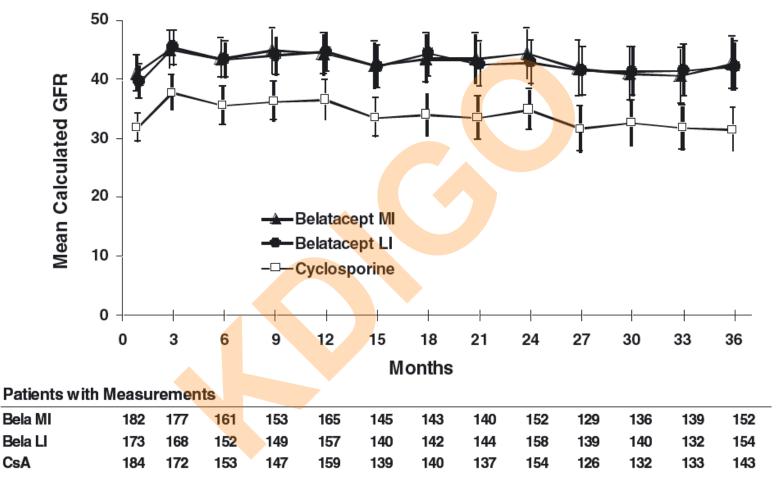
- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development



Alemtuzumab: Anti-CD52 T-Cell & B-Cell-Depleting Monoclonal Antibody

Alemtuzumab: Anti-CD52 T-Cell & B-Cell-Depleting Monoclonal Antibody

*High-risk: repeat transplant, a peak or current value PRA > 20%, or black race.


Acute Rejection in BENEFIT & BENEFIT-EXT

	Belatacept MI (N=219)	Belatacept LI (N=226)	Cyclosporine A (N=221)
Acute Rejection	49 (22%)	39 (17%)	16 (7%)
Banff grade IIA	17 (8%)	16 (7%)	6 (3%)
Banff grade IIB	20 (9%)	10 (4%)	2 (1%)

	Belatacept MI (N=184)	Belatacept LI (N=175)	Cyclosporine A (N=184)
Acute Rejection	33 (18%)	31 (18%)	26 (14%)
Banff grade IIA	10 (5%)	17 (10%)	17 (9%)
Banff grade IIB	16 (9%)	8 (5%)	5 (3%)

Estimated GFR in BENEFIT-EXT

Safety Results in BENEFIT & BENEFIT-EXT

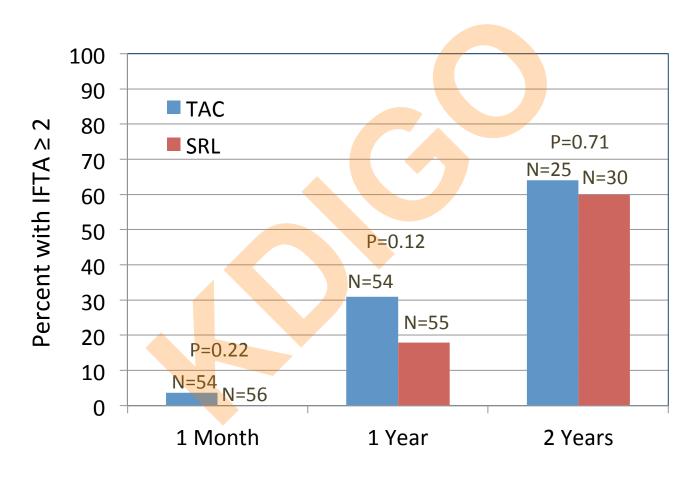
Complication	Belatacept MI (N=403)		Cyclosporine A (N=405)
PTLD	5	6	2
Tuberculosis	6	6	1

Late Switch from CNI to Belatacept

Randomized, open-label trial:

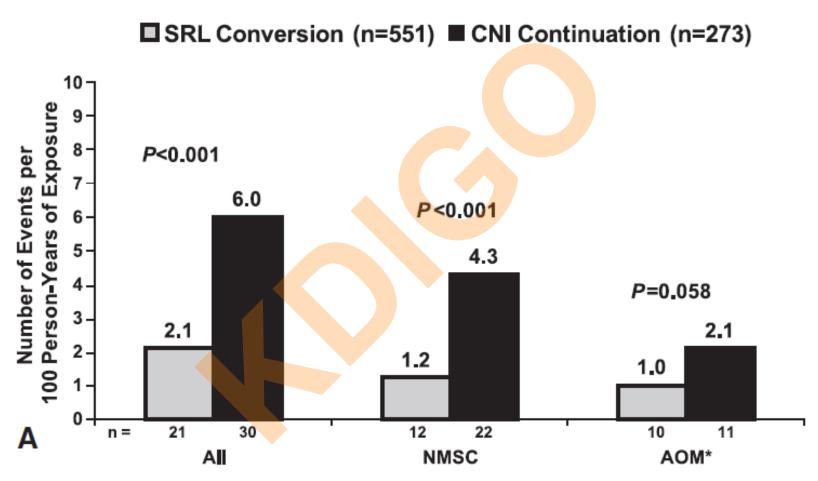
- Stable 6-36 months post-transplant
- Group 1 (N=89): continue CNI
- Group 2 (N=84): change to belatacept

Complication	Belatacept (N=84)	Continue CNI (N=89)
Acute rejection	6 (7%)	0
Banff grade IIA	3 (4%)	0
Banff grade IIB	1 (1%)	0

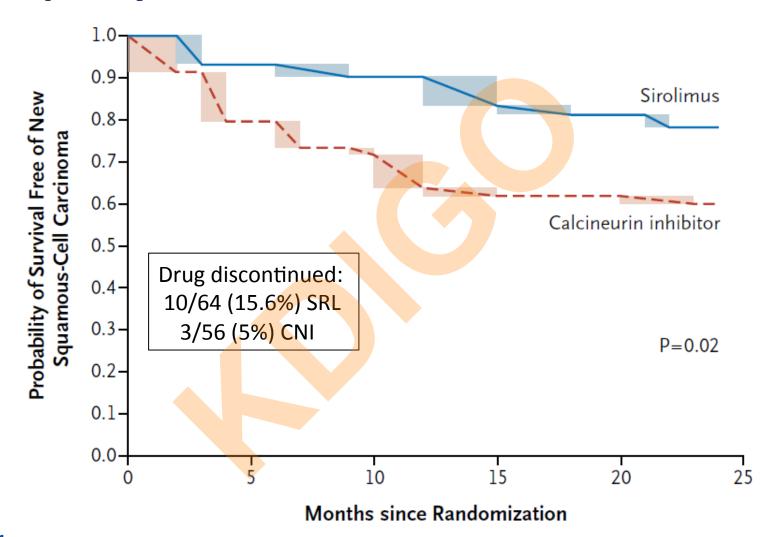

Question 3

A 40 year old 1 year after a deceased donor kidney transplant is on tacrolimus, mycophenolate and prednisone 2.5 mg daily. You would consider switching tacrolimus to an mTOR inhibitor for decreasing eGFR from 60 to 50 mL/min/1.73m² with Banff Grade 1-2 interstitial fibrosis.

- A. Yes
- B. No
- C. Unsure



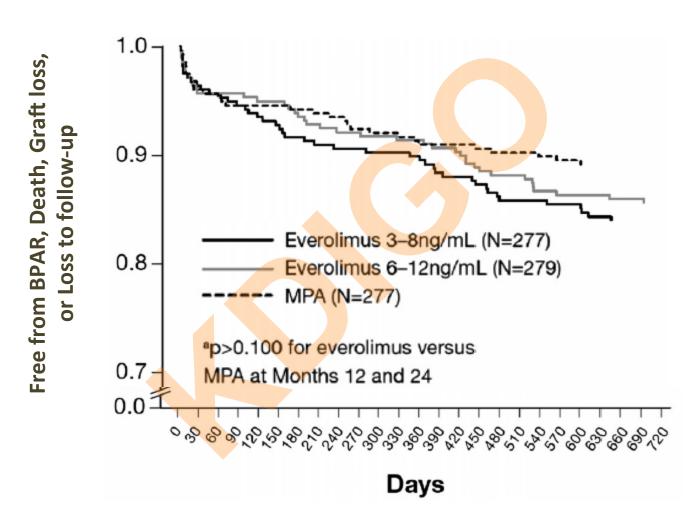
Effect of Rapamycin Conversion at 1 Month on Interstitial Fibrosis at 1 and 2 Years



Effect of Rapamycin Conversion on Cancer

Rapamycin in Patients with Skin Cancer

Shaded boxes indicate 95% confidence intervals.


Question 4

A 40 year old 3 years after a deceased donor kidney transplant is on tacrolimus, mycophenolate and prednisone 2.5 mg daily. You would consider switching tacrolimus to an mTOR inhibitor for new onset diabetes.

- A. Yes
- B. No
- C. Unsure

Everolimus for CNI Minimization

Late Conversion from CNI to Everolimus

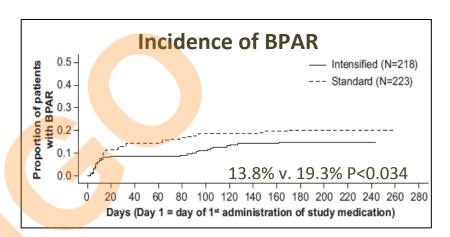
	EVR + CNI Elimination (N=127)	EVR + CNI Minimization (N=144)	Controls (N=123)
BPAR	7 (5.5%)	8 (5.6%)	3 (2.4%)
Serious Adverse Events	72 (56.7%)*	78 (54.2%)	52 (42.3%)
Proteinuria > 3.5 g/L	10 (7.9%)	15 (10.4%)	5 (4.1%)
Hyperlipidemia	36 (28.3%)*	34 (23.6%)*	11 (8.9%)
mGFR (mL/min/1.73m ²)	48.0±22.0	46.6±21.1	46.0±20.4

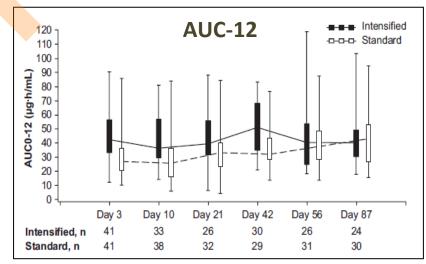
^{*}P<0.05 v. Controls

Question 5

A 32 year old with no rejection 6 months after a living donor kidney transplant, develops diarrhea. He is on tacrolimus, mycophenolate mofetil (MMF) and prednisone. Evaluation for treatable causes of diarrhea is negative. You would:

- A. Reduce the dose of MMF
- B. Change MMF to EC-mycophenolate sodium
- C. Change MMF to azathioprine
- D. Use symptomatic treatment only

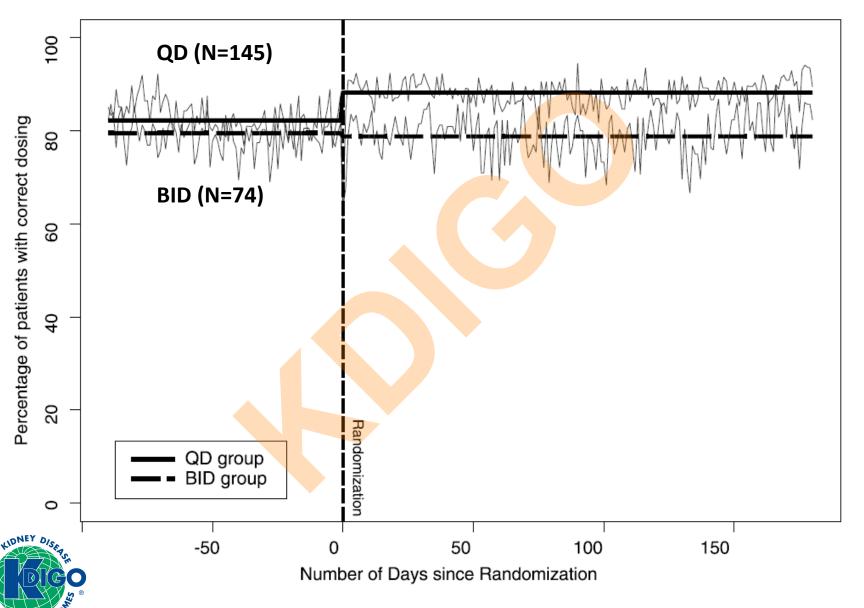

Effect on GI Symptoms of Conversion to Enteric-Coated Mycophenolate Sodium


	Treatment group		_
	EC-MPS (N=199), n (%)	MMF (N=197), n (%)	P
Patients with at least one GI AE ^a	77 (38.7)	91 (46.2)	0.1545
Abdominal distension	27 (13.6)	31 (15.7)	0.5719
Diarrhea	22 (11.1)	19 (9.6)	0.7420
Dyspepsia	19 (9.5)	17 (8.6)	0.8616
Nausea	11 (5.5)	23 (11.7)	0.0320
Flatulence	11 (5.5)	19 (9.6)	0.1325
Eructation	9 (4.5)	20 (10.2)	0.0348
Abdominal pain upper	9 (4.5)	18 (9.1)	0.0754
Abdominal pain lower	11 (5.5)	14 (7.1)	0.5426
Intestinal functional disorder	10 (5.0)	14 (7.1)	0.4079
Gastroesophageal reflux disease	13 (6.5)	9 (4.6)	0.5115
Constipation	7 (3.5)	15 (7.6)	0.0829
Vomiting	6 (3.0)	11 (5.6)	0.2258

[&]quot; A patient with multiple occurrences of an AE is counted only once in the AE category for that treatment.

Intensified Mycophenolate

- 2 open-label RCTs (N=441)
 - EC-MMF
 - 2w 2880/d; 4w 2160/d then 1440/d
 - Standard 1440/d
- Other:
 - IL2-RA (74%), CsA, steroids
- AEs causing dose reduction:
 - Intensified: 67 (31.5%)
 - Standard: 45 (20.5%) P=0.011


Conversion to Once Daily Tacrolimus

Event at 12 Months	Once Daily (N=162)	Twice Daily (N=162)	P-Value
Efficacy failure*	4(2.5%)	4 (2.5%)	N.S.
Discontinuation	20 (12.3%)*	4 (2.5%)	0.028
Adverse events	135 (82.7%)	133 (81.6%)	N.S.
Serious adverse even <mark>ts</mark>	36 (22.2%)	26 (16%)	N.S.

^{*}Death, graft failure, locally read biopsy-proven acute rejection, or loss to follow-up

Once v. Twice Daily Tacrolimus Adherence

Key RCT Results since the KDIGO Guideline

Alemtuzumab: similar to rATG, possibly less expensive

Belatacept: role unclear

Rapamycin: role unclear except to prevent skin cancer

Everolimus: similar to rapamycin

Enteric-coated mycophenolate sodium: role unclear

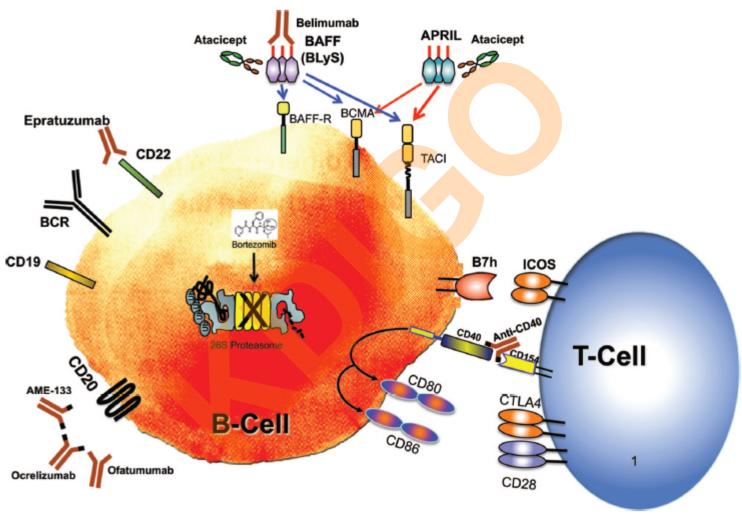
Intensified mycophenolate: role unclear

Once daily tacrolimus: may improve adherence

Kidney Disease: Improving Global Outcomes

New Immunosuppression Horizons

- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development

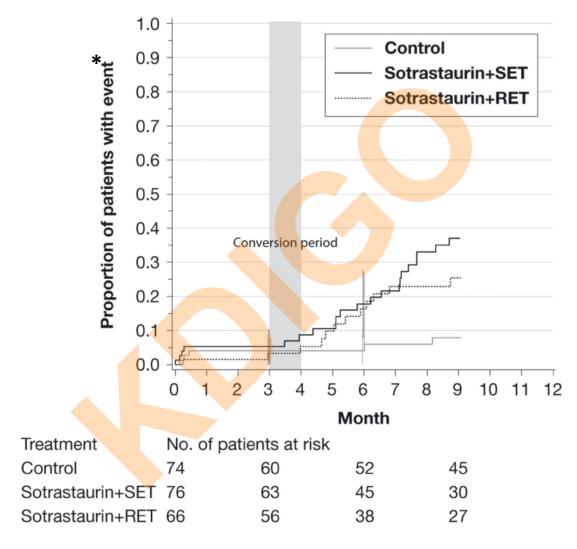


Question 6

A 40 year old 3 years after a deceased donor kidney transplant on low-dose tacrolimus, mycophenolate and prednisone 2.5 mg daily, develops decreasing eGFR 60 to 50 mL/min/1.73m² over 12 months. Biopsy shows Banff Grade 2 interstitial fibrosis, inflammation in areas of fibrosis, C4d(-), and arteriolar hyalinosis. A single DSA is positive in low titer. This is most likely:

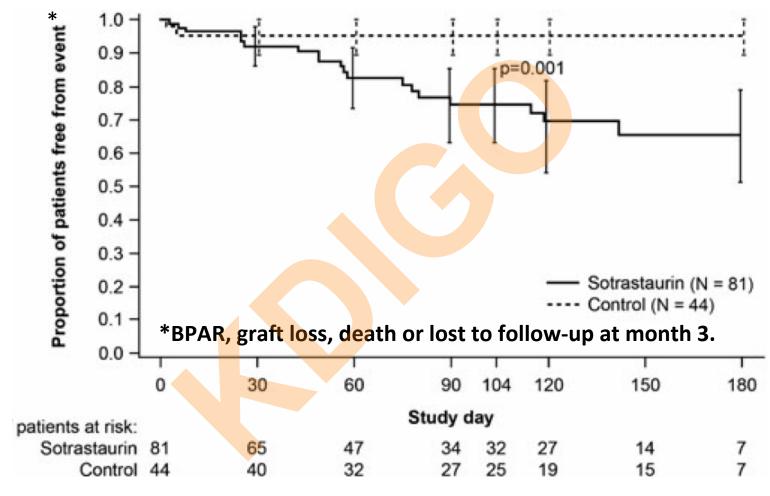
- A. Chronic antibody-mediated rejection
- B. CNI toxicity
- C. Non-adherence
- D. A combination of the above

New Immunosuppression Horizons

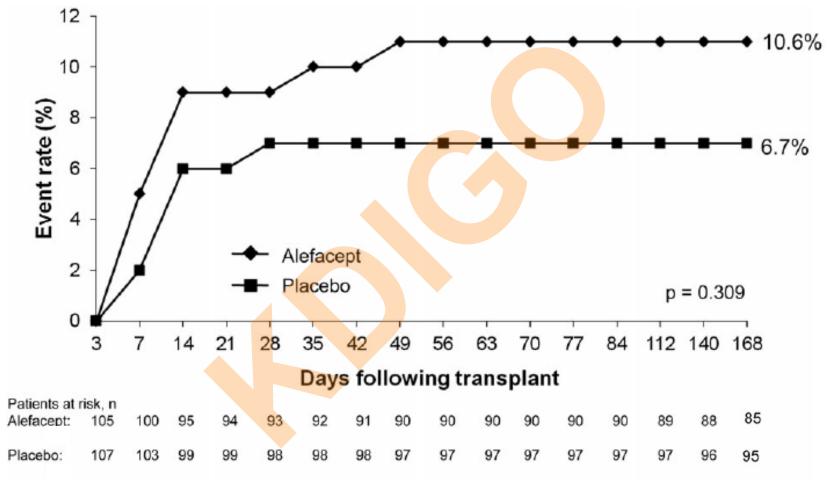

Tofacitinib versus CsA

Complication	CsA (N=109)	CP MI (N=106)	CP LI (N=107)
BPAR at Month 12	18.8%	17.4%	15.4%
mGFR (mL/min)	53.9	64.6*	64.7*
CMV disease	4.5%	19.5%*	13.3%*
PTLD	0	2#	1

^{*}p<0.05 vs. CsA; #2 more cases of PTLD after 12 mo.

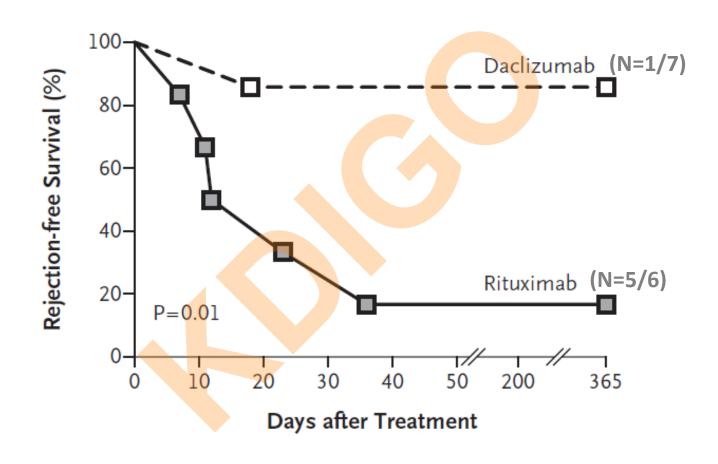

Sotrastaurin with Tacrolimus Minimization

Sotrastaurin versus Tacrolimus


Alefacept Phase II RCT

Parameter	Control (N=79)	A+Low Tac (N=77)	A+Tac (N=75)	A(qow)+Low Tac (N=78)
BPAR (%)	12.7	26.3*	18.8	16.7
CD4+ T memory (cells/mm3)	538.6	335.2*	330.9*	268.8*
CD8+ T memory (cells/mm3)	146.3	84.8*	92.0*	56.2*

*P<0.05 versus control



Alefacept Phase II RCT

Rituximab Induction

Rituximab Induction

	Rituximab (N=68)	Placebo (N=68)	P-Value
Treatment failure* at 6 months	10 (14.7%)	14 (20.6%)	0.348
BPAR at 6 months	8 (11.6%)	12 (17.6%)	0.317

^{*}Acute rejection, graft loss, or death during the first 6 months

Rituximab Induction

	Rituximab (N=138)	Placebo (N=142)	P-Value
BPAR at 6 mo.	15.9%	21.8%	0.15
BPAR at 6 mo. in N=62 with PRA>6 or re-transplant	17.9%	41.1%	0.039
Patient survival at 24 mo.	92.3%	92.8%	0.87
Graft survival at 24 mo.	88.7%	87.7%	0.93

Systematic Review of AMR Treatment

Therapy	Action	Evidence supporting the treatment ^a
Plasmapheresis (PP) ^b	Decrease the titer and block the effect of DSA	Low, benefit not consistently demonstrated
Immunoadsorption (column)	Decrease the titer of DSA	Low, seems beneficial
IVIG	Decrease the titer and block the effect of DSA	Very low
Bortezomib	Decrease production of DSA	Very low
Corticosteroids	Decrease inflammation caused by DSA in graft and decrease production of DSA, suppression of T cells	Very low
Anti-thymocyte preparations	Reduce production of DSA by decreasing Helper T cells, suppression of T cells	Very low
Eculizumab	Block complement activation resulting from DSA activation	Very low
Mycophenolate	Block the effect and decrease production of DSA, suppression of T cells	Very low
Rituximab	Decrease production of DSA	Very low
Cyclophosphamide	Decrease production of DSA	Very low
Deoxyspergualin	Decrease production of DSA, suppression of T cells	Very low
Splenectomy	Decrease production of DSA	Very low
Tacrolimus	Decrease production of DSA, Suppression of T cells	Very low

Rituximab Treatment of Acute Cellular Rejection with B-Cell Infiltrates

- Rituximab in acute cellular tubulointerstitial rejection with B-cell infiltrates (RIACT).
- Randomized, double-blind, placebo-controlled, parallel group Phase III study.
- Addition to standard treatment with steroids
- Endpoint: 1-year kidney function
- N=180

Ongoing Phase II Bortezomib Trials

- Prevention of AMR in sensitized patients
- Treatment of late AMR

Ongoing Phase II Eculizumab Trials

- Prevention of AMR in sensitized patients
- Prevention of AMR in XM(+) patients
- Treatment of acute AMR
- Treatment of chronic AMR
- World's most expensive drug?
 (Matthew Herper, Forbes, Feb. 22, 2010)

Promising Pipeline?

Tofacitinib: higher rate of PTLD versus CsA

Sotrastaurin: more rejection versus tacrolimus

Alefacept: more rejection versus tacrolimus

Rituximab: phase III induction & AMR treatment trials

Bortezomib: phase II induction & AMR treatment trials

Eculizumab: phase II induction & AMR treatment trials

New Immunosuppression Horizons

- "Golden Era" of RCTs
- KDIGO Guideline 2009
- Current Clinical Practice
- Recent Randomized Trials
- New Drug Development

