What a nephrologist should know about vascular access

Tushar Vachharajani, MD VAMC Salisbury, NC

KIDNEY DISE

GLOBAL OUTCOM

Why should a nephrologist bother about vascular access?

Because that is the right thing to do for your patients!

CKD Management

Dialysis Issues

Ideal Vascular Access

- Easy to construct
- No foreign material
- No thrombosis
- No infections
- Easy to cannulate
- Long lasting
- Good blood flow

Life line and Achilles heel

Types of vascular access

- Arteriovenous fistula
- Arteriovenous graft
- Central venous catheter

Central Venous Catheters

- Temporary non-cuffed emergent situations
- Bridging cuffed
 - Internal jugular vein
 - -Femoral vein
 - -Subclavian vein
 - -Translumbar IVC
 - -Transhepatic IVC

• Why is AVF the preferred vascular access for dialysis? A.Lower infection rate **B.Lower thrombosis rate** C.Less expensive D.Less overall morbidity E.All of the above

Catheter events & complications

Kidney Disease: Improving Global Outcomes

USRDS

Arteriovenous graft events

& complications

Kidney Disease: Improving Global Outcomes

USRDS

Arteriovenous fistula events

& complications

Kidney Disease: Improving Global Outcomes

USRDS

PPPY expenditures,

by type of access

PPPY access costs

by type of access

Common issues with vascular access

- Infection Catheters >AVG > AVF
- Primary failure due to poor maturation of AVF
 - ~ 60% failure rate -NIH sponsored DAC study, JAMA 2008
- Stenosis due to neo-intimal hyperplasia
 - -AVG: Mainly at the venous anastomosis

 AVF: Arterial (inflow) anastomosis, venous (outflow) track

Primary Patency of AVF Compared to AVG

Mehta S, in Vascular Access for Hemodialysis II. Summer BG, Henry ML 1991

AVF is the preferred access

- –↓ incidence of infection
 - AVF < AVG < CVC
- –↓ incidence of thrombosis
 - AVF < AVG
- –↑ patency rate
 - AVF > AVG

Vascular access in incident HD patients

Ethier et al. Nephrol Dial Transplant 2008; 23(10):3219-3226

Vascular access trends –1996 - 2007

Ethier et al. Nephrol Dial Transplant 2008; 23(10):3219-3226

Vascular access trends –1996 - 2007

Ethier et al. Nephrol Dial Transplant 2008; 23(10):3219-3226

Kidney Disease: 2013 Raik et lobal Outcomes

How are we doing with

vascular access care?

Vascular access care

- Historically has remained fragmented between
 - Nephrologist
 - Surgeon
 - Radiologist

Drawbacks of fragmented care

- -Missed dialysis treatments
- -Treatment decisions sporadic rather than planned
- -Increases
 - morbidity/mortality
 - Hospitalization
 - Cost of care

Concept of Vascular Team

Nephrologist as a team

leader

- Better understands the complexity of the dialysis process and needs of an ESRD patient
- Better understands the importance of access patency
- Coordinate with the dialysis personnel

Role of a nephrologist

- Arrange for timely intervention to avoid missing dialysis treatment
- Can easily coordinate the surveillance program
- Can supervise the education and training of dialysis personnel

Global Awareness

- Concept team approach
- Procedures being performed by nephrologist
- Supported by major renal societies
 - ASN, ISN, ERA-EDTA, NKF, ISHD
- Multiple meetings dedicated to access care
 - VASA, ASDIN, VEITH symposium, VAS

How many sites are available for AVF creation on each upper extremity?

Upper extremity AVF sites

- Traditional AVF
 - Snuff-box
 - Radiocephalic
 - Brachiocephalic

- Transposed AVF
 Proximal forearm
 AVF
 - Transposed basilic vein in upper arm
 - Transposed basilic vein in forearm
 - Transposed cephalic vein in forearm

Radiocephalic AVF

Vachharajani – Atlas of Vascular Access - 2010

Brachiocephalic AVF

Vachharajani – Atlas of Vascular Access - 2010

Transposed basilic vein AVF

Vachharajani – Atlas of Vascular Access - 2010

Transposed forearm AVF

Brachial Artery-Cephalic Vein Forearm Loop Fistula

Surgical Innovations

- Transposed vessel fistula
 - -Forearm cephalic and basilic
 - Upper arm basilic
 - Proximal forearm deep perforating vein
 - Thigh fistula
 - -Secondary AVF

When is the ideal time to evaluate a

new AVF for maturity?

A. 2 weeks B. 4 weeks C. 6 weeks D. 8 weeks E. 12 weeks

Timing of change in flow and size

Asif A, Roy-Chaudhury P, Beathard GA: CJASN 1:332-339, 2006

Common lesions with Early AVF Failure

Transposed forearm basilic vein to radial artery
 fistula

Accessory veins – coil embolization

Overview of FTM problem

85 (71.4%) Two or more derangements stenosis (≥ 1) and significant 35 (29.4%) accessory vein stenosis (≥ 2) without significant 50 (42%) accessory vein Single derangement only 34 (28.6%) significant accessory vein 4 (3.4%) deep AVF 6 (5%) stenosis 24 (20.2%)

Nassar et al - Clin J Am Soc Nephrol 1: 275–280, 2006

Access Monitoring

KDOQI defines monitoring, as applying physical examination techniques to detect access dysfunction.

When done correctly, monitoring can identify most access dysfunction.

Vascular Access Monitoring

Central vein stenosis

GIOBAL OUTCO Kidney D

Sensitivity and Specificity of PE

- 142 consecutive patients
- Upper arm AVF 95 (67%)
- Forearm AVF 47 (33%)

<u>Diagnosis</u>	<u>Sens</u>	<u>Spec</u>	<u>PE +</u> <u>Angio</u>
Inflow stenosis	85%	71%	83%
Outflow Stenosis	92%	86%	89%
Coexisting inflow-outflow stenosis	w 68%	84%	79%
Central vein stenosis	13%	99%	poor

Kidney Disease: Improving Global O

Asif et al CJASN 2:1191;2007

Newer devices

- Bioengineered blood vessels
- Novel anastomostic connectors Optiflow
- Percutaneous Intergraft device for anastomosis
- Heparin bonded PTFE graft

Newer devices

HeRO device –

Hybrid AVG + Catheter

- Indication
 - AVF is not an option
- Clinical experience
 - Limited
 - Thrombosis rate high

Optiflow implant

Yevzlin A S , and Valliant A M CJASN 2013;8:1244-1251

Sutureless Hybrid Vascular Graft

Vascugel[®] wrap

Permission obtained from Elsevier © Conte, M. S. *et al. J. Vasc. Surg.* **50**, 1359.e1–1368.e1 (2009)

DNEY DIA

Riella, M. C. & Roy-Chaudhury, P. (2013) Vascular access in haemodialysis: strengthening the Achilles' heel *Nat. Rev. Nephrol.* doi:10.1038/nrneph.2013.76

Bioengineered vessels from allogeneic cells by Humacyte

Abbreviation: AV, arteriovenous.

Permission obtained from American Association for the Advancement of Science © Dahl, S. L. *et al. Sci. Transl. Med.* **3**, 68ra9 (2011)

Riella, M. C. & Roy-Chaudhury, P. (2013) Vascular access in haemodialysis: strengthening the Achilles' heel *Nat. Rev. Nephrol.* doi:10.1038/nrneph.2013.76

DNEY DIA

Targeted therapy

over a 0.014" guide wire and through a vasculature within protective 6Fr sheaths. inflated with saline, securing the system for injection and sliding the micro-needle through the vessel wall.

space and Adventitia for concentrated treatment and no washout.

Venous and arterial connectors of the InterGraft device.

Future goals

- Improve process of care specific for various regions across the globe
- Include and emphasize access care in training program
- Better understand the pathophysiology of neo-intimal hyperplasia
- Research into novel endovascular drug delivery systems and newer devices

