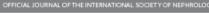


CKD-RELATED ANEMIA CONCLUSION FROM KDIGO CONTROVERSIES CONFERENCE

Dr. Gregorio T. Obrador Vera, M.P.H.


Dean and Professor of Nephrology, Faculty of Health Sciences and School of Medicine, Universidad Panamericana (México, CDMX)

Adjunct Assistant Professor of Medicine, Tufts University School of Medicine & Tufts Medical Center (Boston, MA)

Clinical Practice Guidelines on the Treatment of CKD-related Anemia

1989	Introduction of EPO for clinical use
1997	KDOQI Guidelines on CKD-related anemia
2006	UPDATE → KDOQI Guidelines on CKD-related anemia
2007	UPDATE → KDOQI Guidelines on Hb target level
2010	REVISION - KDIGO Guidelines on CKD-related anemia
2012	PUBLICATION → KDIGO Guidelines on CKD-related anemia
2014	KDIGO Controversies Conference on the use of iron
2016	PUBLICATION → Article of the CC on the use of iron

KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease

VOLUME 2 | ISSUE 4 | AUGUST (2) 2012 http://www.kidney-international.org

Work Group Membership

Nahey International Supplements (2012) 2, 281; doi:10.1038/kisup.2012.39

John J V McMurray, MD, FRCP, FESC BHF Glasgow Cardiovascular Research Centre Glasgow, United Kingdom

WORK GROUP CO-CHAIRS

Patrick S Parfrey, MD, FRCPC, FRSC Memorial University Medical School St John's, Canada

WORK GROUP

John W Adamson, MD University of California at San Diego San Diego, CA, USA

Pedro Aljama, MD, PhD Hospital Universitario Reina Sofía Córdoba, Spain

Jeffrey S Berns, MD The Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA

Iulia Bohlius, MD, MScPH University of Bern Bern, Switzerland

Tilman B Drueke, MD, FRCP Université de Picardie Jules Verne Amiens, France

Fredric O Pinkelstein, MD Yale University New Haven, CT, USA

Steven Fishbane, MD North Shore-LIJ Health System Manhasset, NY, USA

Tomas Ganz, PhD, MD David Geffen School of Medicine at UCLA Los Angeles, CA, USA Iain C Macdougall, BSc, MD, FRCP King's College Hospital London, United Kingdom

Ruth A McDonald, MD Seattle Children's Hospital Seattle, WA, USA

Lawrence P McMahon, MBBS, MD Monash University Box Hill, Australia

Gregorio T Obrador, MD, MPH Universidad Panamericana School of Medicine Mexico City, Mexico Giovanni FM Strippoli, MD, PhD, MPH

Giovanni PM Strippoli, MD, PhD, MP: Consorzio Mario Negri Sud Chieti, Italy

Günter Weiss, MD Medical University of Innsbruck Innsbruck, Austria

Andrzej Więcek, MD, PhD, FRCP Silesian University School of Medicine Katowice, Poland

EVIDENCE REVIEW TEAM

Tufts Center for Kidney Disease Guideline Development and Implementation
Tufts Medical Center, Boston, MA, USA:

Ethan M Balk, MD, MPH; Project Director; Program Director, Evidence-hased Medicine
Ashish Upadhyay, MD, Assistant Project Director
Dana C Miskulin, MD, MS, Staff Nephrologist
Amy Earley, BS, Project Coordinator
Shana Haynes, MS, DHSc, Research Assistant

hana Haynes, MS, DHSc, Research Assistant Jenny Lamont, MS, Project Manager

In addition, support and supervision were provided by: Katrin Uhlig, MD, MS; Director, Guideline Development

KDIGO Controversies Conference

Iron management in chronic kidney disease: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference

lain C. Macdougall¹, Andreas J. Bircher², Kai-Uwe Eckardt³, Gregorio T. Obrador⁴, Carol A. Pollock^{5,6}, Peter Stenvinkel⁷, Dorine W. Swinkels⁸, Christoph Wanner⁹, Günter Weiss¹⁰, and Glenn M. Chertow¹¹; for Conference Participants¹² *Kidney International* (2016) **89**, 28–39

- Iron overload
- Oxidative stress
- Infections
- Anaphylactoid reactions

2012 KDIGO Guidelines Anemia in CKD

- ✓ Identification, diagnosis and evaluation of the cause
- Role of iron to treat CKD-related anemia

Role of ESAs and other drugs to treat CKD-related anemia

Role of blood transfusions to treat CKD-related anemia

Evaluation of Anemia FREQUENCY

PATIENTS <u>WITHOUT</u> ANEMIA When it is clinically advised and

CKD 3 At least annually

CKD 4 and CKD 5ND At least once every 6 months

CKD 5HD and CKD 5PD

At least once every 3 months

PATIENTS <u>WITH ANEMIA & WITHOUT</u> TREATMENT WITH ESA When it is clinically advised and

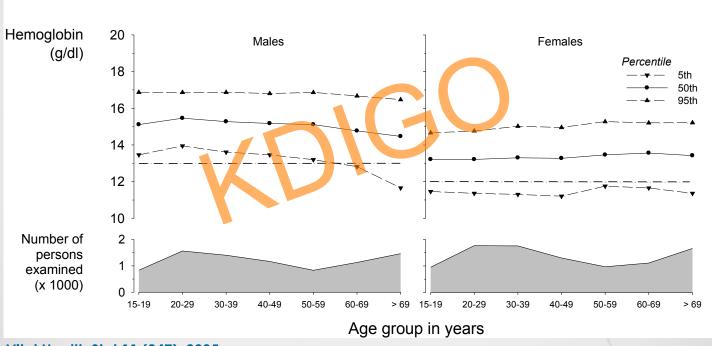
CKD 3-5ND and CKD 5PD At least once every 3 months

CKD 5HD At least once a month

ANEMIA: Definition in Previous Guidelines

WHO	 Hb <13 g/dL → Men
2001	 Hb <12 g/dL → Women
KDOQI 2001	 Hb <12.0 g/dL → Adult men and postmenopausal women Hb <11 g/dL → Premenopausal and prepuberal women
EBPG 2004	 Hb <13.0 g/dL → Adult men Hb <12 g/dL → Men >70 years old Hb <11.5 g/dL → Adult women

ANEMIA: Definition in 2006 KDOQI Guidelines


1.1.3 Diagnosis of anemia:

In the opinion of the Work Group, diagnosis of anemia should be made and further evaluation should be undertaken at the following Hb concentrations:

- <13.5 g/dL in adult males.
- <12.0 g/dL in adult females.

NHANES III (1988-1994) Distribution of Hb Levels

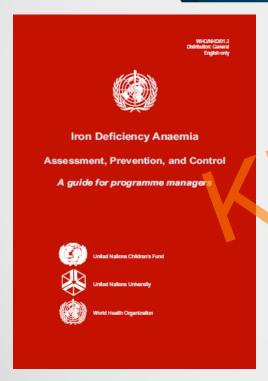
Vital Health Stat 11 (247), 2005 MMWR 47:1-36, 1998

ANEMIA: Definition in 2012 KDIGO Guidelines

Diagnosis of anemia

1.2.1: Diagnose anemia in adults and children > 15 years with CKD when the Hb concentration is <13.0 g/dl (<130 g/l) in males and <12.0 g/dl (<120 g/l) in females. (Not Graded)

ANEMIA: Definition - WHO 2008


Age or gender group	Haemoglobin threshold (g/l)	
Children (0.50-4.99 yrs)	110	
Children (5.00-11.99 yrs)	115	
Children (12.00-14.99 yrs)	120	
Non-pregnant women (≥15.00 yrs)	120	
Pregnant women	110	
Men (≥15.00 yrs)	130	
0 (0)		

Source: adapted from reference (2)

Iron deficiency anaemia: assessment, prevention, and control. A guide for programme managers. Geneva, World Health Organization, 2001 (WHO/NHD/01.3).

ANEMIA: Definition - WHO 2001

Age or gender group	Haemoglobin g/l
Children 6 months to 59 months	110
Children 5–11 years	115
Children 12–14 years	120
Non-pregnant women (above 15 years of age)	120
Pregnant women	110
Men (above 15 years of age)	130

ANEMIA: Definition

REPORT OF A WHO SCIENTIFIC GROUP

3. CRITERIA FOR THE DIAGNOSIS OF ANAEMIA

In detecting and evaluating an anaemia problem in a community, reference standards are necessary, even though they may be somewhat arbitrary. The report 2 of the 1958 WHO Study Group recommended haemoglobin values below which anaemia could be considered to exist. These figures were chosen arbitrarily and it is still not possible to define normality precisely. However, more recent data 4 indicate that the values given previously should be modified. It is recommended that, in future studies, anaemia should be considered to exist in those whose haemoglobin levels are lower than the figures given below (the values given are in g/100 ml of venous blood of persons residing at sea level):

children aged 6 months to 6 years: 11
children aged 6-14 years: 12
adult males: 13
adult females, nonpregnant: 12
adult females, pregnant: 11

² Wld Hlth Org. techn. Rep. Ser., 1959, No. 182, p. 4.

⁴ Natvig, K. (1966) Acta med. scand., 180, 613; Tibblin, G., unpublished observations; Kilpatrick, G. S. & Hardisty, R. M. (1961) Brit. med. J., 1, 778; De Leeuw, N. K. M., Lowenstein, L. & Hsiek, Y. S. (1966) Medicine (Baltimore), 45, 291; Sturgeon, P. (1959) Brit. J. Haemat., 5, 31.

ANEMIA: Definition Challenges

- WHO's anemia definition is questionable; it could be included as a research recommendation in the guidelines
- Ideally a **Hb distribution** should be obtained to define appropriate cut-off levels for each population
- It is necessary to correct the Hb level according to altitude, smoking, and race

Impact of Altitude on Hb Concentration

Altitude (meters)	Hb (g/dL) increase
<1000	0
1000	+ 0.2
1500	+ 0.5
2000	+ 0.8
2500	+ 1.3
3000	+ 1.9
3500	+ 2.7
4000	+ 3.5
4500	+ 4.5

WHO, 2001

Impact of Smoking on Hb Concentration

Smoker Status	Hb (g/dL) increase
Non smokers	70
Smokers (all)	+ 0.3
• ½-1 package/day	+ 0.3
• 1–2 package/ day	+ 0.5
>2 package/ day	+ 0.7

Am J Kidney Dis 41:S1-S135, 2005

Impact of Race on Hb Concentration

- Hb concetration levels vary among individuals of different races
- African-American individuals have Hb levels that are 0.5-0.9 g/dl lower than those of non African-American individuals

 Since the cause of the difference in Hb levels among races is unknown and could reflect different degrees of comorbidity, the guideline did not include specific cut-off levels for defining anemia among different races

Evaluation of the Causes of Anemia

- 1.3: In patients with CKD and anemia (regardless of age and CKD stage), include the following tests in initial evaluation of the anemia (*Not Graded*):
 - Complete blood count (CBC), which should include Hb concentration, red cell indices, white blood cell count and differential, and platelet count
 - Absolute reticulocyte count
 - Serum ferritin level
 - Serum transferrin saturation (TSAT)
 - Serum vitamin B₁₂ and folate levels

Additional tests

Other tests, in addition to those indicated above, may be appropriate in individual patients and in certain specific clinical settings. For instance measurement of high sensitivity C-reactive protein (CRP) may be indicated if occult inflammation is a concern. In certain countries and/or in patients of specific nationalities or ethnicities, testing for hemoglobinopathies, parasites, and other conditions may be appropriate.

2012 KDIGO Guidelines Anemia in CKD

- ✓ Identification, diagnosis and evaluation of the cause
- ✓ Role of iron to treat CKD-related anemia
- Role of ESAs and other drugs to treat CKD-related anemia

Role of blood transfusions to treat CKD-related anemia

Treatment with Iron BENEFITS VS RISKS

Benefits

Avoid or minimize

- Transfusions
- ESAs
- Symptoms

Risks

- Anaphylactoid and other acute reactions
- Unknown long-term risks

KDIGO Guidelines 2012

No Iron or ESA

IV Iron (or oral iron x 1-3 months if CKD-ND)

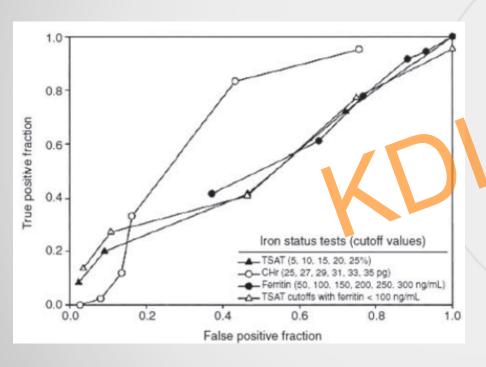
↑ Hb without initiating ESA, and TSAT ≤30% and ferritin ≤500 ng/ml (2C)

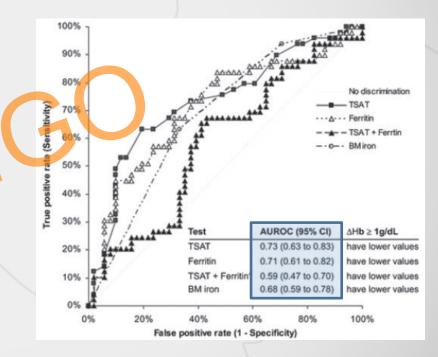
IV Iron (or oral iron x 1-3 months if CKD-ND)

↑ Hb or ↓ dose of ESA, and

TSAT ≤30% y ferritin ≤500 ng/ml (2C)

KDIGO Guidelines 2012





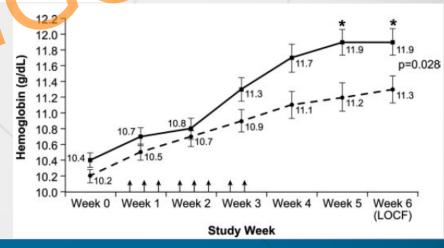
KDOQI Guidelines 2006

Sensitivity and Specificity of TSAT and Serum Ferritin

TSAT ≤ 30%

- A level of TSAT < 30% usually indicates iron deficiency
- Patients with anemia and TSAT > 20% tend to respond to treatment with iron either by increasing the Hb level or by decreasing the ESA dose
- With other levels of TSAT, the sensitivity and specificity are limited to predict iron deficiency or Hb increase after treatment with iron

KDIGO Guidelines 2012


Ferric Gluconate Is Highly Efficacious in Anemic Hemodialysis Patients with High Serum Ferritin and Low Transferrin Saturation: Results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study

Daniel W. Coyne,* Toros Kapoian,† Wadi Suki,‡ Ajay K. Singh,§ John E. Moran,

Naomi V. Dahl,¶ and Adel R. Rizkala;¶ the DRIVE Study Group

J Am Soc Nephrol 18: 975-984, 2007

- 134 HD patients with Hb ≤11 g/dl, ferritin of 500-1200 ng/ml, and TSAT ≤25%
- Randomized to receive 125 mg of IV ferric gluconate for 8 consecutive sessions VS no iron
- Baseline Epo dose was ↑ 25% in both groups
- Follow-up to 6 weeks

Serum Ferritin ≤ 500 ng/dl

- Although most patients with serum ferritin > 100 ng/dl have normal iron stores in the bone marrow, they tend to respond to treatment with iron by increasing the Hb concentration or decreasing the ESA dose
- There is not enough evidence to determine the benefits and the risks of administering additional iron to patients with serum ferritin > 500 ng/dl

<u>KDOQI 2006</u> and other sources recommend <u>NOT</u> to administer iron to patients with serum ferritin levels between 500-800 ng/dl, because the increase in Hb level and the decrease in ESA dose is limited and potential adverse effects

KDIGO Guidelines 2012

 It does not define the lower limit of TSAT and of ferritin due to insufficient evidence

- It defines the upper limit of TSAT and ferritin
- It emphasizes the importance of individualizing treatment

KDIGO Guidelines 2012

European Renal Best Practice (ERBP) Recommendations for Iron Treatment

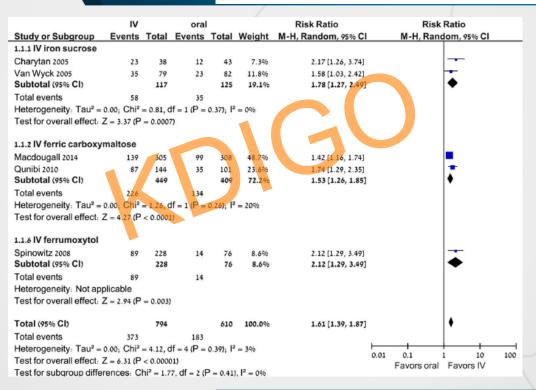
Without ESA or Fe	With ESA	Comments
If there is absolut iron deficiency, or	 If ↑ in Hb level or ↓ in ESA dose is desired, and 	It defines the lower limit of TSAT and ferritin to start iron treatment based more
 If ↑ Hb level without recurring to ESA is desired, and 	 TSAT <30%, and Ferritin <300 ng/ml (even higher levels in patients in HD 	on pragmatic criteria than on evidence
 TSAT <25%, and Ferritin <200 ng/ml (CKD ND) or <300 ng/ml (CKD 5D) 	with a weak response to ESAs or unfavorable risk/benefit with ESAs)	It defines the upper limit of TSAT and ferritin
 Do not intentionally exceed ferritin >500 ng/ml or TSAT >30% 	 Do not intentionally exceed ferritin >500 ng/ml or TSAT >30% 	Risk of minimizing the importance of individualizing treatment with iron

Treatment with Iron ROUTE OF ADMINISTRATION

- In patients with CKD-ND, select the route of administration based on
 - Severity of iron deficiency
 - IV access availability
 - Previous response to oral or IV iron
 - Treatment compliance
 - Costs

KDIGO Guidelines 2012

Treatment with Iron ROUTE OF ADMINISTRATION


	Evidence	
CKD ND	No clear evidence of the benefits of IV vs PO iron (Hb ↑ 0.31 g/dl with IV versus PO iron)	
CKD 5HD	IV iron is more effective than PO iron and it is easier to administer	
CKD 5PD	Limited evidence that IV iron is more effective than PO iron (KDOQI CPG 2006 favored PO iron as initial treatment)	

KDIGO Guidelines 2012

Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis

Am J Kidney Dis 68:677-690, 2016

Treatment with Iron DOSAGE

Initial Dose

 Administered as a single dose or as repeat lower doses that add up to 1 gram

Maintenance Dose

- Periodic doses when needed
- Low doses at regular intervals

Conference Participants¹²

KDIGO Controversies Conference

Iron management in chronic kidney disease: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference

lain C. Macdougall¹, Andreas J. Bircher², Kai-Uwe Eckardt³, Gregorio T. Obrador⁴, Carol A. Pollock^{5,6}, Peter Stenvinkel⁷, Dorine W. Swinkels⁸, Christoph Wanner⁹, Günter Weiss¹⁰, and Glenn M. Chertow¹¹; for

Kidney International (2016) 89, 28-39

- Iron overload
- Oxidative stress
- Infections
- Anaphylactoid reactions

Iron Overload

- An elevated level of total body iron could be associated with a greater risk of organ damage over time
- Little is known about the circumstances in which the excess of iron causes damage to the organs where it accumulates and the consequences of the overload
- In patients with CKD, organ dysfunction caused by iron overload is rare;
 however, it could take longer to accumulate for being clinically relevant

Oxidative Stress I

- Administration of IV iron to patients with CKD
 - Oxidative damage to DNA and peripheral blood lymphocytes
 - Protein oxidation and lipids peroxidation
 - Celular apoptosis, endothelial dysfunction, and monocyte adhesion
- Current methods to measure oxidative stress and assess risk or prognosis are inconsistent

Oxidative Stress II

- Evidence that the administration of iron promotes atherosclerosis and vascular remodeling is also inconsistent
- The effect of antioxidants in patients with CKD is unclear

Infections BASIC SCIENCE EVIDENCE

- Iron is important for
 - Proliferation and pathogenicity of mutliple organisms
 - Regualtion of the immune response (i.e., modulates cell proliferation and differentiation) cytokine production, and other actions of the immune system against infections)
- Homeostatic imbalance of iron can affect not only the risk but also the consequences of infections

Infections CLINICAL EVIDENCE

Clinical evidence is **insufficient** to determine if the administration of iron is associated with an increased risk of infection

- Most of the evidence derives from observational studies in HD patients
- Few controlled clinical trials with few patients and short follow-up
- Very limited evidence in predialysis and PD patients
- Several meta-analysis and systematic reviews have been inconclusive

Infection Risk with Bolus versus Maintenance Iron Supplementation in Hemodialysis Patients

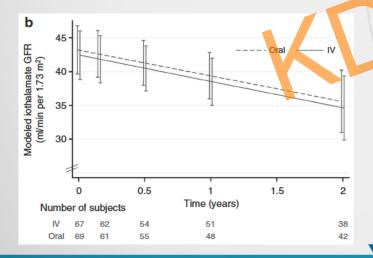
J Am Soc Nephrol 24: 1151–1158, 2013

Table 2. HRs and RDs for high versus low dose and bolus versus maintenance dosing comparisons

D	High Versus Low Dose			Bolus Versus Maintenance Dosing		
Parameter Estimate (95% CI)	Hospitalized for Infection	Infection-Related Death	Infection-Related Hospitalization or Death	Hospitalized for Infection	Infection-Related Death	Infection-Related Hospitalization or Death
Unadjusted HR	1.37 (1.33 to 1.40)		1.37 (1.34 to 1.40)			1.52 (1.48 to 1.56)
Adjusted HR	1.05 (1.02 to 1.07)	1.08 (0.99 to 1.19)	1.05 (1.02 to 1.08)	1.08 (1.05 to 1.11)	1.11 (1.00 to 1.23)	1.08 (1.05 to 1.11)
Adjusted RD/1000	12.1 (5.7 to 18.8)	1.2 (-0.74 to 2.8)	13.0 (6.2 to 19.5)	24.8 (15.8 to 33.1)	2.0 (-0.36 to 4.1)	26.1 (17.6 to 35.0)
person-yr						

Table 3. HRs and RDs for high versus low and bolus versus maintenance dosing comparisons using expanded definitions of infection

Parameter	Hospitalized for Infection of Any Organ System		Use of IV Antibiotics		Hospitalized for Infection or Use of IV Antibiotics	
Estimate (95% CI)	High Versus Low	Bolus Versus Maintenance	High Versus Low	Bolus Versus Maintenance	High Versus Low	Bolus Versus Maintenance
Unadjusted HR	1.32 (1.30 to 1.35)	1.44 (1.41 to 1.47)	1.24 (1.22 to 1.27)	1.34 (1.32 to 1.37)	1.27 (1.25 to 1.28)	1.37 (1.35 to 1.39)
Adjusted HR	1.03 (1.01 to 1.06)	1.05 (1.03 to 1.08)	1.02 (1.00 to 1.03)	1.05 (1.03 to 1.07)	1.02 (1.00 to 1.03)	1.05 (1.03 to 1.07)
Adjusted RD/1000	13.9 (4.8 to 24.2)	27.7 (17.5 to 38.0)	12.3 (2.7 to 22.9)	39.8 (27.4 to 53.0)	18.3 (5.4 to 31.9)	56.9 (38.3 to 72.5)
person-yr						



A randomized trial of intravenous and oral iron in chronic kidney disease

Rajiv Agarwal¹, John W. Kusek² and Maria K. Pappas¹

Kidney International advance online publication, 17 June 2015

- 136 patients with CKD 3-4 and iron deficiency anemia
- Randomized to receive IV iron sucrose or PO iron
- Objective: assess differences in GFR

Serious Adverse Events	Adjusted Incidence Rate	
Global	1.60 (1.28 – 2.00)	
Cardiovascular	2.51 (1.56 – 4.04)	
Infections	2.12 (1.24 – 3.64)	

Nasopharyngitis

Influenza

Infections CLINICAL EVIDENCE

10 (6.7)

8 (5.3)

23 (7.6)

12 (3.9)

16 (5.1)

7(2.2)

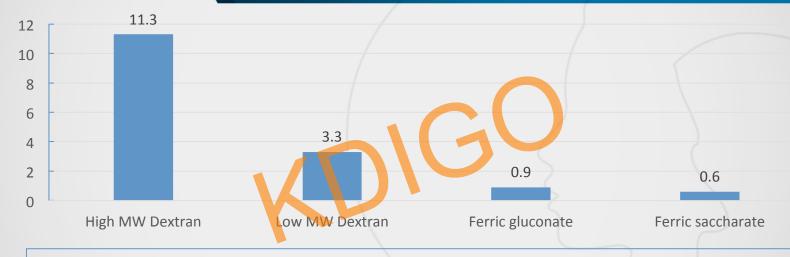
FIND-CKD: a randomized trial of intravenous ferric

disease and iron deficiency anaemia Nephrol Dial Transplant (2014) 0: 1-10

Event	High-ferritin FCM (n = 154)	Low-ferritin FCM (n = 150)	FCM total $(n = 304)$	Oral iron $(n = 312)$
A 1 (0/)		, , ,	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Any adverse event, n (%)	126 (81.8)	129 (86.0)	255 (83.9)	255 (81.7)
Gastrointestinal disorders	32 (20.8)	38 (25.3)	70 (23.0)	128 (41.0)
Diarrhoea	15 (9.7)	11 (7.3)	26 (8.6)	45 (14.4)
Constipation	2 (1.3)	5 (3.3)	7 (2.3)	37 (11.9)
Nausea	9 (5.8)	7 (4.7)	16 (5.3)	15 (4.8)
Dyspepsia	2 (1.3)	3 (2.0)	5 (1.6)	17 (5.4)
Infections	51 (33.1)	51 (34.0)	102 (33.6)	95 (30.4)
Urinary tract infection	18 (11.7)	10 (6.7)	28 (9.2)	17 (5.4)

13 (8.4)

4(2.6)



Infections

- There are significant methodological differences between the two studes (REVOKE and FIND-CKD), so they are not fully comparable
- There is an urgent need for a controlled clinical trial to assess the safety of the treatment with IV iron in patients with CKD
- KDIGO's recommendation to avoid use of IV iron in the presence of systemic bacterial infections is reasonable (Not Graded)

Anaphylactoid Reactions FREQUENCY

- If high MW iron dextran is excluded, the frequency of anaphylactoid reactions is < 1:200,000 administrations
- The FDA recommends to slow the infusion of Ferumoxytol due to severe anaphylactoid reactions

KDIGO Recommendation

- If the initial dose of IV iron is dextran (1B) or not dextran (2C), we recommend/suggest
 - To monitor the patient for 60 minutes after the infusion
 - Have cardiopulmonary resuscitation equipment at hand (including drugs) and trained personnel to potentially treat serious adverse events

KDIGO Guidelines 2012

2012 KDIGO Guidelines Anemia in CKD

- ✓ Identification, diagnosis and evaluation of the cause
- ✓ Role of iron to treat CKD-related anemia
- ✓ Role of ESAs and other drugs to treat CKD-related anemia
- Role of blood transfusions to treat CKD-related anemia

KDIGO Recommendations Regarding ESA Use

Recommendations

- **3.1** Identify any **treatable cause** of anemia (e.g. iron deficiency, CKD-related) before starting treatment with ESAs (**Not Graded**)
- **3.2** For the decision to initiate and maintain treatment with ESAs, it is recommended to balance the benefits (reduction of the risks associated with transfusions and symptoms related to anemia) and the risks (CVA, HTN, loss of vascular acces, malignancy) (1B)
- **3.3** It is recommended **not to use ESAs or only with extreme caution** in patients with:
- Active malignancy (specially if cure is anticipated) (1B)
- History of CVA (1B)
- History of malignancy (2C)

Benefits of ESA TREAT STUDY

Transfusions					
Absolute risk of transfusions	15% in the high Hb group 25% in the placebo group				
	Quality of Life				
TREAT Study	Compared with placebo, the treatment with darbepoetin in the high Hb group resulted in a modest but consistent improvement in fatigue and global quality of life, but not in energy and functional capacity				
2 recent systematic reviews	Both suggest the that the highest improvement in quality of life is with Hb levels between 10-12 g/dl				

Risks of ESA I TREAT STUDY

Cerebrovascular Accident					
Relative risk of CVA	1.92 (95% CI, 1.38 – 2.68)				
Absolute risk of CVA	5% in the high Hb group 2.6% in the placebo group				
Absolute risk in patients with history of CVA	12% in the high Hb group 4% in the placebo group				
Absolute risk of CVA attributable to a high level of Hb/darbepoeitin	8% in patients with history of CVA 1% in patients without history of CVA				

Venous Thrombosis				
Absolute risk of VT	2% in the high Hb group 1.1% in the placebo group			

Risks of ESA II TREAT STUDY

Malignant Neoplasm

In patients with **history** of malignant neoplasm at the beggining of the study

Mortality of 7.4% in the high Hb group Mortality of 0.6% in the placebo group

Recommendations for Starting Treatment with ESA

CKD ND

Do not initiate when Hb is $\geq 10 \text{ g/dl}$ (2D)

When Hb < 10 g/dl, it is suggested to individualize the decision to start depending on (2C)

- Rate of ↓ of the Hb level
- Response to previous Rx with iron
- Risk of requiring transfusion
- Risks associated with ESA use
- Symptoms of anemia

CKD 5D

Start when Hb is between 9-10 g/ dl to prevent it falling to < 9 g/dl (2B)

Recommendations for Maintaining Treatment with ESAs

CKD ND and 5D

In general it is suggested not to use ESAs to maintain Hb > 11.5 g/dl (2C)

Individualize treatment because some patients can have a better quality of life with Hb > 11.5 g/dl if they are willing to accept the risks (**Not Graded**)

Do not intentionally maintain Hb > 13 g/dl (1A)

Reasons for the Lower Limit of the Hb Target

- In the TREAT study, patients randomized to placebo had a mean Hb level of 10.6 g/dl despite that they did not receive or only received small doses of darbepoietin if the Hb was < 9 g/dl
- There is no evidence to support that all patients with Hb levels between
 9-10 g/dl should receive treatment with ESAs INDIVIDUALIZE
- In patients with CKD 5HD, Hb tends to drop faster and reach levels of 8 g/dl; risk of transfusion is significantly reduced if Hb does not fall to < 9 g/dl

Canadian Erythropoietin Study Group

- 118 patients with CKD 5HD
- Epo was administered if Hb < 9 g/dl to 1 to 9.5 11 g/dl (Group I) or
 > 11 g/dl (Group II) versus placebo

	Placebo	Group I	Group II
Transfusions	58%	2.5%	2.6%
QOL		Improved compared to placebo	Improvement was similar to Group I

NDT 7:811-16, 1992

Reasons for the Upper Limit of the Hb Target

- It is based upon the interpretation that the maximum Hb level reached in the control group of the recent ECCs was < 11.5 g/dl
- There is no enough evidence regarding the potential benefit of increasing the Hb level between 11.5-13 g/dl
 - CREATE showed benefits in quality of life but CHOIR didn't
- A Hb level > 13 g/dl is associated with a higher risk of complications

Reasons for the Upper Limit of the Hb Target

	Besarab (98)	Parfrey (05)	CREATE (06)	CHOIR (06)	TREAT (09)
Patients	1233 HD with CVD	596 HD w/o CVD	603 CKD 3-4	1423 CKD 3-4	4038 CKD 3-4
Achieved Hb (g/dl)	12.7-13.3 10.0	13.3 10.9	13.4 11.6	12.7 11.4	12.5 10.6
Mortality	↑ IAM	↑ CVA	ND	↑ CV events	ND
QOL	个 physical domain	个 vitality score	$\uparrow \uparrow \uparrow$	~	↑
Transfusions	?	?	26 vs 33	?	\

2012 KDIGO Guidelines Anemia in CKD

- ✓ Identification, diagnosis and evaluation of the cause
- ✓ Role of iron to treat CKD-related anemia
- ✓ Role of ESAs and other drugs to treat CKD-related anemia
- ✓ Role of blood transfusions to treat CKD-related anemia

Role of Blood Transfusions to Treat Anemia

- 4.1.1: When managing chronic anemia, we recommend avoiding, when possible, red cell transfusions to minimize the general risks related to their use. (1B)
- 4.1.2: In patients eligible for organ transplantation, we specifically recommend avoiding, when possible, red cell transfusions to minimize the risk of allosensitization. (1C)

Risk of Transfusions IMMUNOLOGICAL MECHANISMS

Table 5 | Estimated risk associated with blood transfusions per unit transfused

Adverse event	Estimated risk*
Immunological Fever/allergic reactions	1 in 100–200 ^{a,b}
Hemolytic reaction	1 in 6000 ^b
Transfusion-related acute lung injury (TRALI)	1 in 12,350 ^a
Anaphylaxis	1 in 50,000 ^b
Fatal hemolysis	1 in 1,250,000 ^a
Graft versus host disease (GVHD)	Rare

Other

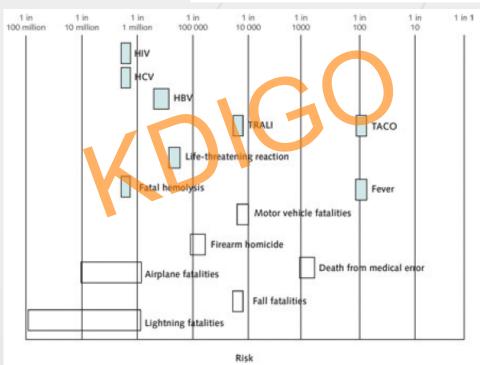
Mistransfusion

1 in 14,000–19,000^c

^{*}United States data.

^aData from Carson JL et al.²¹²

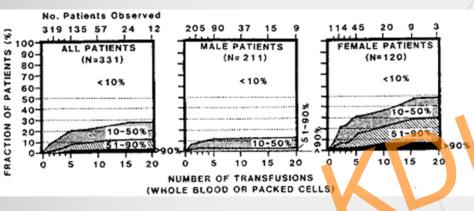
^bData from Klein.²¹³

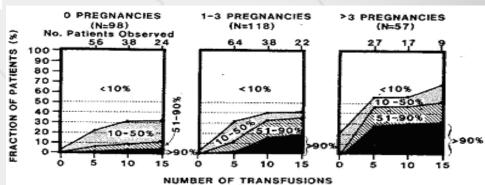

^cData from Klein HG et al.²¹⁴

Clinical Guidelines

Red Blood Cell Transfusion: A Clinical Practice Guideline From the AABB

First published March 26, 2012 on annals.org.





LYMPHOCYTOXIC ANTIBODY RESPONSES TO TRANSFUSIONS IN POTENTIAL KIDNEY TRANSPLANT RECIPIENTS¹

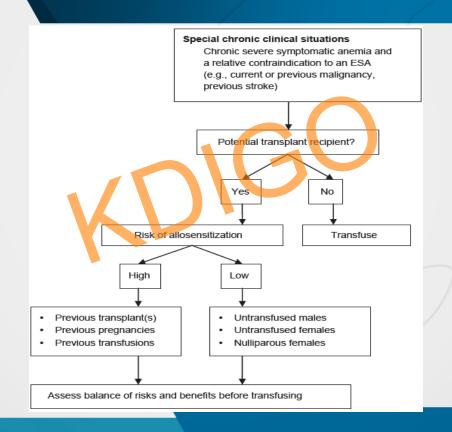
GERHARD OPELZ,² BEVERLY GRAVER, M. RAY MICKEY, AND PAUL I. TERASAKI

Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, California 90024

KDIGO Recommendations I

Acute clinical situations

- Acute severe hemorrhage
- Unstable coronary artery disease
- When rapid preoperative Hb correction is required


Chronic clinical situations

 Chronic anemia and ESAs are ineffective (hemoglobinopathies, bone marrow failure, ESA resistance)

Transfuse

KDIGO Recommendations II

New Therapies HIF STABILIZERS

New Therapies HIF-PH inhibitors under Development

Generic Name	Investigational Name	Sponsor	Half-Life, h	Dosing Frequency	Investigational Status
Roxadustat	FG-4592	FibroGen, Astellas, & AstraZeneca	12-13	3×/wk	Phase 3
Vadadustat	AKB-6548	Akebia	4.5	Daily	Phase 3
Daprodustat	GSK-1278863	GlaxoSmithKline	4	Daily	Phase 2 (US)
				-	Phase 3 (Japan)
Molidustat	BAY 85-3934	Bayer	NA	Daily	Phase 2

Am J Kidney Dis 69:815-26, 2017

Potential Advantages of HIF Stabilizers

Consistent although not continuous and more physiological doses of endogenous Epo

Increased availability of iron for erythropoiesis

Oral administration

Unanswered Questions

Effect on cardiovascular health

Impact of normalizing Hb with these agents

 Risks associated with activation of VEGF (progressive retinopathy, tumor growth...)

Conclusions

- KDIGO guideline recommendations for the management of anemia of CKD are based on current limited evidence
- There are gaps of knowledge that require further investigation
- Current treatment of anemia of CKD is not optimal
- New therapies such as HIF stabilizers are promising