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In 2017, Kidney Disease: Improving Global Outcomes
(KDIGO) published a Clinical Practice Guideline Update for
the Diagnosis, Evaluation, Prevention, and Treatment of
Chronic Kidney Disease–Mineral and Bone Disorder (CKD-
MBD). Since then, new lines of evidence have been
published related to evaluating disordered mineral
metabolism and bone quality and turnover, identifying and
inhibiting vascular calcification, targeting vitamin D levels,
and regulating parathyroid hormone. For an in-depth
consideration of the new insights, in October 2023, KDIGO
held a Controversies Conference on CKD-MBD: Progress
and Knowledge Gaps Toward Personalizing Care.
Participants concluded that the recommendations in the
2017 CKD-MBD guideline remained largely consistent with
the available evidence. However, the framework of the
2017 Guideline, with 3 major sections—biochemical
abnormalities in mineral metabolism; bone disease; and
vascular calcification—may no longer best reflect currently
available evidence related to diagnosis and treatment.
Instead, future guideline efforts could consider mineral
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homeostasis and deranged endocrine systems in adults
within a context of 2 clinical syndromes: CKD-associated
osteoporosis, encompassing increased fracture risk in
patients with CKD; and CKD-associated cardiovascular
disease, including vascular calcification and structural
abnormalities, such as valvular calcification and left
ventricular hypertrophy. Participants emphasized that the
complexity of bone and cardiovascular manifestations of
CKD-MBD necessitates personalized approaches to
management.
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C hronic kidney disease–mineral and bone disorder
(CKD-MBD) affects the skeletal and cardiovascular
systems, occurs across all CKD stages, and results

from the individual and combined effects of traditional and
CKD-specific risk factors for skeletal and cardiovascular dis-
eases (Figure 1). CKD-specific risk factors encompass those
resulting from the interplay of uremic toxins, disturbances
in mineral metabolism, and altered activity of immune,
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New conceptual framework moving towards personalized care in adults with CKD-MBD
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Figure 1 | Conceptual framework moving toward personalized care in adults with chronic kidney disease–mineral and bone disorder
(CKD-MBD). CKD-MBD results from the individual and combined effects of traditional and CKD-specific risk factors for skeletal and
cardiovascular diseases. CKD-associated risk factors include the interplay of disturbances to mineral metabolism, uremic toxins, and the
immune, endocrine, neurohormonal, and gut systems. Although CKD-associated cardiovascular disease (CVD) and osteoporosis exist within
the larger context of cardiovascular and skeletal systems, the extent of their overlap is not completely understood. Diagnosis of disorders
associated with CKD-MBD can be based on the following: (i) biochemical assessment (calcium, phosphorus, 25-hydroxyvitamin D, parathyroid
hormone, fibroblast growth factor-23, and bone formation and resorption markers); (ii) skeletal imaging (thoracic/lumbar spine films and
dual-energy X-ray absorptiometry); (iii) histomorphometric assessments (bone biopsy); and/or (iv) cardiovascular imaging (vascular
calcification, echocardiogram). Once the clinical manifestations of CKD-MBD have been identified, measures to mitigate disease severity and
progression should be initiated to prevent negative clinical outcomes, including bone loss, fractures, major adverse cardiac events, and/or
death.
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endocrine, neurohormonal, and gut systems. Diagnosis of the
disorders associated with CKD-MBD can be based on the
following: (i) biochemical assessment (calcium, phosphorus,
25-hydroxyvitamin D [25-(OH)]D), parathyroid hormone
[PTH], fibroblast grown factor-23 [FGF23], and bone forma-
tion and resorption markers); (ii) skeletal imaging (thoracic/
lumbar spine films and dual-energy X-ray absorptiometry);
(iii) histomorphometric assessments (by bone biopsy); and/
or (iv) cardiovascular imaging (vascular calcification,
echocardiogram).

Kidney Disease: Improving Global Outcomes (KDIGO)
published its first clinical practice guideline for the diagnosis,
evaluation, prevention, and treatment of CKD-MBD in 2009.1

In 2017, a selective update of the guideline was published.2

Since then, new lines of evidence have emerged within the
field of CKD-MBD. To synthesize and evaluate the new in-
sights for their relevance and potential impact on patient care,
in October 2023, KDIGO held a Controversies Conference on
CKD-MBD: Progress and Knowledge Gaps Toward Person-
alizing Care. Conference discussions were organized into 4
406
major groupings: (i) management of secondary hyperpara-
thyroidism; (ii) osteoporosis, bone morphology, and histo-
pathology; (iii) maintenance of phosphate and calcium
homeostasis; and (iv) diagnostic tests and interventions for
cardiovascular calcifications.

During conference discussions, participants emphasized the
complex nature of treating bone fragility and vascular ab-
normalities in patients with CKD and the necessity of incor-
porating patient health and preferences into management
(Figure 2). There was consensus that the original framework
within the 2009 guideline and 2017 update may no longer best
reflect currently available evidence related to diagnosis and
treatment in clinical practice. A concept was put forth to move
to a framework of 2 clinical syndromes in adults: CKD-
associated osteoporosis and CKD-associated cardiovascular
disease. Both would be included within the more general
disorders of the cardiovascular and skeletal systems. This
report summarizes the major themes resulting from confer-
ence discussions, identification of key research needs, and
areas of important consideration in future guideline
Kidney International (2025) 107, 405–423
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Figure 2 | Holistic approach to skeletal and vascular
complications of chronic kidney disease (CKD). A personalized
strategy for optimal management of calcium (Ca) and phosphate
(Phos) levels in patients with CKD should consider the complete
chronic kidney disease–mineral and bone disorder phenotype and
overall health, priorities, and preferences of the individual patient.
Sources of calcium and phosphate include diet, medications, and
bone when high bone turnover is present. Phosphate is removed
from circulation during dialysis, whereas calcium fluxes can be
bidirectional. Both calcium and phosphate can be taken up by
bone during bone remineralization (hungry bone syndrome).
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development (Table 1). Conference plenary slide presentations
are available on the KDIGO website: https://kdigo.org/
conferences/controversies-conference-on-personalizing-ckd-
mbd-care/.
CKD-ASSOCIATED OSTEOPOROSIS
Terminology
A key issue at the Controversies Conference was the concept
of bone fragility and osteoporosis versus renal osteodystrophy
(ROD) in patients with CKD. A main concern was that the
term ROD represents a roadblock to managing fracture risk
and fosters an overly PTH- and calcium-phosphate–centric
approach to bone disease management, focusing solely on
bone turnover while ignoring other critical abnormalities in
bone tissue properties that also drive fracture risk and are not
corrected by PTH- and calcium-phosphate–centered strate-
gies. Conference participants robustly debated whether a
change in terminology could recenter treatment of bone
disease to the skeleton itself, meaning correcting bone quality
defects that are responsible for decreased bone strength in
patients with CKD.

Osteoporosis is a disorder of bone that decreases bone
strength and increases risks of fracture. Bone strength is
defined by both the amount and quality of bone. Bone
quantity (i.e., volume) can be evaluated by imaging with
either 2-dimensional dual-energy X-ray absorptiometry
(DXA) or 3-dimensional computed tomography (CT). Bone
quality is defined by bone properties, including bone
Kidney International (2025) 107, 405–423
geometry (size, shape), microarchitecture (trabecular and
cortical), and tissue properties (turnover, mineralization,
collagen content, and microcracks). Abnormality in any of
these features of bone strength increases the risk of fractures.
Clinically, osteoporosis is defined as a T-score #–2.5
measured by DXA and/or having a fragility fracture at any
level of bone mineral density (BMD).

ROD is a bone disorder that is associated with global defects
in bone quality and strength, increasing risk of fracture inde-
pendent of BMD. Therefore, conference participants regarded
ROD as part of the osteoporosis spectrum (Figure 3).
Furthermore, conference participants recognized that bone
disease in patients with CKD is complex and multifaceted, with
overlapping features of ROD and other forms of osteoporosis
(e.g., age or immobility related, postmenopausal, hypogonadal,
glucocorticoid induced, or nutritional, etc.).

The term CKD-associated osteoporosis was developed to
acknowledge and emphasize that ROD is a disorder of bone
strength that increases fracture risk. Because CKD-associated
osteoporosis is a distinct form of osteoporosis with over-
lapping metabolic bone diseases, management strategies must
be tailored to the distinct features of bone quality that are
impaired in an individual rather than algorithmized, as for
postmenopausal osteoporosis. Below we describe approaches
that were discussed regarding diagnosis and management.

Pathogenesis
A key issue at the Controversies Conference was the recog-
nition that management of CKD-MBD biochemical abnor-
malities cannot be dissociated from the relevant clinical
outcomes of bone loss and fractures.3 Conference attendees
recognized the need to better understand mechanisms by
which uremia, altered gut and immune systems, inflamma-
tion, and medications affect the CKD-associated osteoporosis
phenotype.

Disturbed mineral metabolism is an important driver of
CKD-associated osteoporosis, with hyperparathyroidism and
vitamin D deficiency playing central roles. Parameters of
mineral metabolism (calcium, phosphate, 25-[OH]D, PTH,
and FGF23) associate with bone disease and fracture risk, but
their individual contributions are complex. For example, in
CKD, there is variability in skeletal responsiveness to PTH.
Skeletal PTH responsiveness has multifactorial determinants,
such as hyperphosphatemia, uremic toxins, gut ecosystem
disturbances, and inflammation, and the interactions of these
are poorly understood. High PTH may increase bone for-
mation and resorption, resulting in a cascade of impairments
to bone quality, including cortical microarchitectural deteri-
oration, abnormal bone mineralization, and altered crystal
structure. In contrast, oversupplementation with active
vitamin D derivatives may suppress PTH, resulting in
adynamic or low-turnover bone, possibly propagating and
worsening microcracks. In addition, older patients and those
on glucocorticoids may have impaired trabecular micro-
structure. Patients with vitamin D deficiency may have
impaired bone mineralization. The attendees also recognized
407
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Table 1 | Consensus points, clinical guideline–related commentary, key knowledge gaps, and research priorities in CKD-MBD

Type of statement CKD-associated osteoporosis CKD-associated cardiovascular disease

Important clinical
concepts

� In most cases, bone formation and resorption markers are
sufficient to assess bone turnover. In some cases, bone biopsy
may be needed to elucidate complex bone disease.

� The concept of a “pleiotropic” effect for both nutritional and
active vitamin D should be abandoned. However, for con-
trolling PTH, low-dose active vitamin D could be a helpful
supplement to nutritional vitamin D and dietary phosphate
restriction.

� PTH is not a bone turnover marker, and PTH values must be
assessed in relation to values of calcium, phosphate, and
25(OH)-vitamin D.

� Recommendations for calcium intake should be
personalized, considering the state of mineral meta-
bolism, overall calcium balance, current medical
therapy, and bone and vascular health.

� Risks of hypocalcemia should not be ignored. It is
reasonable to consider the cause of, and correct,
hypocalcemia.

Commentary related
to guideline
recommendations

� Although the 2009 Guideline used the term “target” for PTH
levels 2–9 times the ULN in CKD G5D,1 there is uncertainty as
to whether this is in fact the optimal range.

� Future guidelines should distinguish between persistent and
secondary hyperparathyroidism after kidney transplantation,
as these differ both in biochemical presentation and in
pathophysiology.

� Guidance is needed on sufficient calcium intake in
patients with CKD, including the safe upper limit to
avoid the risk of vascular calcification progression.

� Future Work Group could consider whether to
recommend measuring ionized calcium in blood.

� There is a need for guidance on holistic management
of calciphylaxis.

Knowledge gaps and
key questions

� Whether vitamin D supplementation has any effect on
important skeletal outcomes in CKD

� The upper 25-(OH)D safety limit and whether vitamin D >75
nmol/l [30 ng/ml] should be aimed for in patients with CKD

� Whether people with CKD not on dialysis should have a
different lower limit for 25-(OH)D from the general
population

� Whether people with CKD not on dialysis benefit from any
target PTH level

� How to manage secondary hyperparathyroidism in CKD not
on dialysis to improve clinically relevant outcomes, including
patient-reported outcomes

� How to define optimal PTH and phosphate levels in CKD-G5D
(on an individual basis)

� Optimal PTH targets in early and late post-transplantation
periods

� Long-term data on bone health and mineral metabolism
beyond 12 mo post-transplant

� How to appropriately manage mineral metabolism distur-
bances after kidney transplantation

� The long-term effect on serum phosphate with measures
targeting bone resorption

� Optimal targets of serum calcium in all patients with CKD
� Optimal protocols for bone-targeting therapy

B Timing, choice of agents, outcome evaluation

� Methods to assess calcium balance, internal fluxes,
and deposition in tissues

� How to accurately measure calcium mass transfer
during dialysis on an individual level

� Whether there is a benefit of optimizing calcium
intake in CKD

� How to identify persons likely to benefit from mod-
ulation of serum magnesium

� Whether modulating serum magnesium delays or
prevents vascular calcification or other adverse clin-
ical outcomes in kidney failure, or whether it affects
bone turnover

� In patients on hemodialysis, what do CPP levels
indicate and whether changes translate to improved
clinical outcomes

� Validated histologic criteria for diagnosing
calciphylaxis

� The clinical relevance and applicability of measuring
FGF23

� The clinical relevance and applicability of measuring
klotho

Research and
translation
priorities

� Standardize the PTH assays.
� Incorporate patient-centered outcomes in future CKD-MBD

trials and clinical practice.
� Evaluate long-term effects on phosphate within studies of

bone-targeting agents.
� Determine the dose–response for supplementation with

different doses/formulations of vitamin D2/D3 and their
influence on PTH, calcium, and phosphorous in CKD.

� Determine optimal management of secondary hyperpara-
thyroidism in CKD not on dialysis.

� Compare 2 different PTH targets in CKD not on dialysis.
� Conduct observational studies to determine the association

between persistent hyperparathyroidism post-transplant and
bone and vascular outcomes.

� Determine the effects of different protocols measuring MBD
profile on patient-centered outcomes, including after
parathyroidectomy.

� Increase participation in clinical trials of bone-targeting
agents and registries for all patients with CKD-associated
osteoporosis.

� Trials of treatment strategies with primary vascular
endpoints should also include relevant bone end-
points and vice versa.

� Solicit patient preferences on treatment of calcium
and phosphate across the spectrum of CKD

� Access target effect of novel therapies to lower FGF23
in CKD G3–G4 and blocking of FGF23 in CKD G5D on
cardiovascular outcomes

� Use novel techniques (calcium isotopes, 18F-sodium
fluoride positron emission tomography, and high-
resolution peripheral quantitative computed
tomography) to explore tissue calcium balance at
different stages of CKD

� Adequately powered RCTs using robust endpoints for
vascular calcification should also include endpoints
relating to histology, biomarkers of bone turnover, or
bone fractures.

� Long-term and large RCTs (e.g., SNF472, magnesium,
and vitamin K) with clinically relevant endpoints (e.g.,
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Table 1 | (Continued)

Type of statement CKD-associated osteoporosis CKD-associated cardiovascular disease

� Harmonize bone turnover marker assays
B Evaluate associations and dynamics with clinical out-
comes (mortality, cardiovascular risk, and fractures) as
well as treatment thresholds within CKD

� Conduct trials on vitamin D/calcium effects on skeletal biology
and outcomes to determine their optimal targets in CKD

� Conduct RCTs or pragmatic trials on skeletal outcomes of
antiresorptive and anabolic agents in CKD

� Aid efforts to establish bone mineral density by DXA as a
surrogate outcome for fracture in CKD

� Explore the role of artificial intelligence in diagnosing,
monitoring, and predicting skeletal outcomes

� Consider how CKD-specific fracture liaison services might be
introduced to improve fracture management and mitigate
future risk

death or major adverse cardiovascular events) are
required.

� Adequate consideration of sex and gender differ-
ences in phosphate homeostasis, bone disease, and
vascular calcification is required.

� Unify terminology related to CPP assays.
� Studies on the biological and molecular function of

CPP and the impact of source of phosphate (diet vs.
bone) and inflammation on phosphate buffering

� Randomized clinical trials for the management of
calciphylaxis

25-(OH)D, 25-hydroxyvitamin D; CKD, chronic kidney disease; CPP, calciprotein particle; DXA, dual-energy X-ray absorptiometry; FGF23, fibroblast growth factor 23; MBD,
mineral and bone disorder; PTH, parathyroid hormone; RCT, randomized controlled trial; ULN, upper limit of normal.
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that CKD-associated osteoporosis is an important clinical
phenotype after kidney transplantation. While the patho-
genesis of skeletal abnormalities may differ from prekidney to
postkidney transplantation, abnormalities in biochemical
markers of CKD-MBD are involved. For example, persistent
hyperparathyroidism after kidney transplantation is an inde-
pendent risk factor for fractures.4 Glucocorticoid exposure is
a major determinant of bone loss5–7 and fractures after kidney
transplantation.3 While minimizing glucocorticoid use has
been shown to protect the skeleton, each patient’s individual
immunologic risk must be considered to protect against
transplant rejection.

Diagnostics
Laboratory assessments. The CKD-associated osteopo-

rosis phenotype can be assessed by measuring circulating
protein products of osteoblast and osteoclast cell function
(Table 2).8–14 Evaluating multiple biochemical measures (e.g.,
bone turnover markers þ PTH þ 25-[OH] vitamin D levels)
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Figure 3 | Evolution of terminology for renal osteodystrophy (ROD).
is a bone disorder that impairs bone quality and increases bone fragility
strength and increases risk of fracture. Bone strength is defined by both
bone strength that increase risk of fracture. (a) A mutually exclusive defi
clinic and for research purposes. (b) Chronic kidney disease (CKD)–assoc
that appreciates the global impact of kidney disease on bone strength. T
associated with CKD and inform and impact research into the underlyin
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may help in diagnosing and defining the severity of the
clinical phenotype and provide surrogate outcome measures
to both inform and monitor integrative and personalized
treatment approaches.

Turnover can also be evaluated by measuring bone for-
mation or resorption markers, or a combination thereof.
Non–kidney-cleared markers of bone formation (bone-
specific alkaline phosphatase, intact procollagen type I
N-propeptide) and resorption (tartrate-resistant acid phos-
phatase isoform 5b) are recommended. Total alkaline
phosphatase can be a proxy for bone-specific alkaline
phosphatase, especially in a setting with normal levels of
gamma-glutamyltransferase. Kidney-cleared biomarkers
must be interpreted with caution, taking into account
knowledge of kidney function, with trends more informative
than single time point measurements. Bone turnover
markers may prove useful for both guiding therapy choices
and monitoring therapy response, either as stand-alone or
adjunct to PTH (Supplementary Table S1).
e separate entities and mutually exclusive diagnoses
eutic interventions are not interchangeable

r risk of fracture than the general population

s a disorder of bone that decreases bone strength,
quality
ers in bone strength
ainst fractures must be personalized and based
ralization

The approach to ROD has been evolving as we appreciate that ROD
. Osteoporosis is defined as a bone disorder that decreases bone
the quantity and quality of bone. ROD is due to global disorders of
nition of ROD and osteoporosis may no longer be operational in the
iated osteoporosis is an inclusive definition of ROD and osteoporosis
his definition may better serve clinical efforts to treat bone disorders
g pathogenesis of fracture risk in patients with CKD.
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Table 2 | Bone turnover markers and fracture prediction in CKD

Study reference Target group Patients Fracture incidence Marker HR or OR (95% CI) AUC

Barrera-Baena et al.,8

2023, COSMOS study
CKD G5D,
prevalent HD

6274 28.5/1000 pat. yr PTH HR 1.04 (1.01–1.08)

Kashgary et al.,9

2023
CKD G5D,
prevalent HD

328 20/1000 pat. yr BALP OR 1.004 (1.001–1.007) 0.665

Osteoporosis OR 1.003 (0.998–1.007) NA

Matias et al.,10 2020 CKD G5D,
prevalent HD

341 31/1000 pat. yr Mean BALP HR 1.21 (1.16–1.33)

Mean PTH <300/
>800 ng/l [>32

nmol/l/<85 nmol/l]

HR 1.24 (1.18–1.29)

Iimori et al.,11 2012 CKD G5D,
prevalent HD

485 19/1000 pat. yr BALP HR 1.04 (1.03–1.04) 0.766

PTH HR 1.00 (1.00–1.00) NA

DXA femoral neck HR 0.96 (0.94–0.99) 0.610

DXA total hip HR 0.97 (0.94–0.99) 0.659

Chen et al.,12 2016 CKD G5D,
prevalent dialysis

685
(629 HD, 56 PD)

33/1000 pat. yr Fetuin A high vs. low HR 0.34 (0.20–0.57)

PTH HR 1.04 (1.008–1.12)

Geng et al., 201913 CKD G3–G4 5108 Incidence 18% PTH >101 ng/l [11
nmol/l] as continuous

variable

HR 1.16 (0.93–1.45)

Maruyama et al.,14 2014 CKD G5D,
prevalent HD

185,277 16/1000 pat. yr ALP HR 1.011 (1.006–1.014)

ALP, alkaline phosphatase; AUC, area under the curve; BALP, bone-specific alkaline phosphatase; CI, confidence interval; CKD, chronic kidney disease; COSMOS, Current
management Of Secondary hyperparathyroidism: a Multicentre Observational Study; DXA, dual-energy X-ray absorptiometry; HD, hemodialysis; HR, hazard ratio; NA, not
available; pat. yr, patient year; OR, odds ratio; PD, peritoneal dialysis; PTH, parathyroid hormone.
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A bone-regulating hormone, PTH is a driver of bone
turnover, although if PTH levels become dissociated from
turnover (e.g., after treatment with an anti-resorptive agent),
it is unreliable as a marker. Furthermore, in patients with
CKD G5D, there is a significant “gray zone” range in which
stand-alone PTH serum levels are also unreliable (approxi-
mately between 2–9 times the upper limit of normal).
Nonetheless, monitoring PTH levels and treating hyperpara-
thyroidism is critical to overall skeletal and vascular health
and is part of an integrative treatment strategy for CKD-
associated osteoporosis. Other critical components of the
integrative strategy include monitoring and management of
serum levels of 25-(OH) vitamin D, calcium, and
phosphorus.

For bone mineralization, high levels of bone-specific
alkaline phosphatase can help diagnose osteomalacia in the
setting of vitamin D deficiency, hypocalcemia, or hypo-
phosphatemia,15 although bone biopsy findings from large
patient cohorts suggest that osteomalacia is rare with current
CKD-MBD management practices.16

Imaging. Bone quantity can be assessed by areal BMD
from DXA, which predicts fractures in patients with CKD
with comparable accuracy as in the general population.11,17,18

Areal BMD can also be used to monitor response to bone-
targeting therapy. World Health Organization T-scores pre-
dict fracture risk similarly in patients with and without CKD,
including in kidney transplant recipients.19–21 If DXA is not
available, the fracture risk assessment tool predicts fractures
in patients with CKD aged$40 years and can be used instead,
although risk may be underestimated. Furthermore, the
fracture risk assessment tool has not been validated in kidney
transplant recipients, and the fracture risk assessment tool
410
cannot be used to monitor risk after bone-targeted treatment
has been initiated. Patients with CKD at high risk for fracture
and who thus should be targeted for fracture risk screening
include postmenopausal and amenorrheic females, males
aged $50 years, patients on prednisone equivalents $5 mg
daily for $3 months, and kidney transplant recipients.22,23

In patients with CKD and hyperparathyroidism, cortical
bone is the more affected bone compartment. The total hip is
a mixture of cortical and trabecular bone and is the preferred
site to measure BMD. The one-third radius site is >80%
cortical bone and can also be used to assess the effects of
hyperparathyroidism on the skeleton. The lumbar spine is
>90% trabecular bone in intact vertebrae, and the anterior-
posterior image acquisition by DXA also includes (poten-
tially calcified) aorta in the field of interest.

Vertebral fractures are usually asymptomatic. However,
they are an important risk factor for future fractures and are
associated with increased mortality. Vertebral fracture
assessment should be performed as part of the baseline bone
fragility screening process by thoracic/lumbar spine films or
lateral DXA for vertebral fracture assessment.24 The presence
of vertebral fractures is an indication to start bone-targeted
treatment.

Bone histomorphometry. Bone biopsy is the gold standard
method to assess the skeletal effects of metabolic bone dis-
eases. It is primarily used in research to assess tissue- and cell-
level mechanisms of bone disease and drug effects. In clinical
practice, bone biopsy may detect defects in bone turnover and
mineralization and effects of complex bone diseases that
cannot be determined noninvasively. However, in most pa-
tients with CKD, treatment decisions are made in the absence
of a bone biopsy.
Kidney International (2025) 107, 405–423
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Although there are clinical concerns about the adverse
effects of low-turnover bone disease, there are no prospective
clinical outcome data suggesting that low-turnover bone per
se has different clinical outcomes to non–low-turnover
bone.25,26 Nonetheless, knowledge of bone turnover, deter-
mined by either bone turnover markers or bone biopsy, might
influence the choice of bone-targeted therapies.

Emerging diagnostics. During recent years, additional
methods to assess bone quality have emerged. These range
from adapting DXA software to provide the vertebral
trabecular bone score and hip structural analysis, to more
sophisticated methods allowing separate analysis of cortical
and trabecular compartments using high-resolution periph-
eral quantitative CT. Transcriptomic analyses of bone samples
from biopsy have the potential for generating new insights
related to pathophysiology or choice of therapy. More
research is needed to confirm if any of these methods is useful
for diagnosis, management, and fracture prevention in CKD-
associated osteoporosis.

Treatments
CKD-associated osteoporosis should be managed with bone-
targeted strategies that are tailored to the patient’s fracture
risk profile and ROD turnover type. While PTH de-
rangements probably account for the major impact of CKD
on bone turnover, classic PTH-lowering therapies may not
suffice in preventing fractures or other negative clinical out-
comes, including bone loss, major adverse cardiovascular
events, and/or death. The complex nature of treating CKD-
associated osteoporosis requires personalized approaches to
management, based on severity of abnormalities in areal
BMD, underlying bone turnover, disordered mineral meta-
bolism, cardiovascular risk profiles, and estimated duration of
treatment. Comanagement between health care providers
with kidney and bone expertise is indicated.

Targeting calcium and phosphate. Data from experimental
studies show that hyperphosphatemia increases bone resis-
tance to PTH, correlates with increased PTH, and decreases
osteocyte viability, which all affect bone quality. Conversely,
hypophosphatemia is associated with impaired mineraliza-
tion. The same rationale could be used for calcium: hypo-
calcemia stimulates PTH and favors mineralization deficits,
whereas hypercalcemia suppresses PTH and decreases osteo-
cyte viability. Therefore, maintaining calcium and phosphate
at adequate levels is also important for bone health. However,
studies focusing on the skeletal effects of different levels of
calcium or phosphate are lacking, except for one study in
which hypophosphatemia was identified as a risk factor for
mineralization defects in the post-transplant setting.27

Targeting 25-(OH)D. Given the current body of evidence,
it remains unclear if vitamin D supplementation has any ef-
fect on important clinical outcomes in CKD. Recent large-
scale studies that included CKD subgroup analyses have
been negative for any benefits of vitamin D supplementation
beyond biochemical ones.28 However, these studies were not
designed with specific inclusion for vitamin D–deficient
Kidney International (2025) 107, 405–423
individuals, and therefore the results should not be inter-
preted as justification for leaving patients with low levels of
vitamin D unsupplemented.29 In the kidney transplant pop-
ulation, data from randomized controlled trials suggest 25-
(OH)D levels $30 ng/ml may optimize bone health as
determined by BMD and fracture events.30,31

Targeting PTH. The optimal PTH level in patients with
CKD not on dialysis remains undefined. Although there is no
evidence for a specific PTH target in such patients, observa-
tional data suggest that high and progressively increasing PTH
levels warrant investigation. Increased PTH and incident
secondary hyperparathyroidism are independently associated
with CKD progression and cardiovascular events, mortality,
and fractures.32,33 For patients with kidney failure, increased
PTH prior to initiation of dialysis predicts high PTH and the
need for PTH-lowering medications during diaysis.34

Although the 2009 Guideline used the term “target” for
PTH levels 2–9 times the upper limit of normal in CKD
G5D,1 there is uncertainty as to whether this is in fact the
optimal range. Epidemiologic studies have demonstrated U-
or J-shaped curves between PTH and all-cause mortality,35–39

and a more linear relationship has been found in Japan.39 The
uncertainty regarding target PTH levels is compounded by the
observed variability in skeletal and kidney responses to PTH.
In some patients, bone biopsy may demonstrate low bone
turnover when PTH is within normal range.40 In addition,
high bone turnover can occur with only moderately elevated
PTH levels.41 Future use of bone biomarkers may aid in
accurately discriminating low versus high bone turnover.

The 2017 Guideline update made a statement against
routine use of activated vitamin D in patients with CKD not
on dialysis. Indeed, results from the PRIMO (Paricalcitol
Capsules Benefits in Renal Failure Induced Cardiac Morbidity
in Subjects With Chronic Kidney Disease Stage 3/4) and
OPERA (Oral Paricalcitol in Stage 3–5 Chronic Kidney Dis-
ease) studies showed activated vitamin D was associated with
an increased risk of hypercalcemia without benefit on cardiac
structures. However, for controlling PTH, low-dose active
vitamin D could be a helpful supplement to nutritional
vitamin D and dietary phosphate restriction.

In individuals with CKD not undergoing dialysis, using
extended-release calcifediol to increase 25-(OH)D to unusu-
ally high levels (>125 nmol/l) can further suppress PTH.42–45

Clinically relevant outcome data are needed before consid-
ering availability and costs of extended-release calcifediol and
to appropriately define treatment goals.

In CKD G5D, novel calcimimetics (etelcalcetide, evo-
calcet,46 and upacicalcet47) have a similar or superior efficacy
to cinacalcet for PTH reduction, although there are no data to
support survival benefits with this class of agents.48 Intrave-
nous formulations can reduce the general pill burden and
increase compliance but can have shorter half-lives.

Based on data from the PROCEED trial (Para-
thyroidectomy versus oral cinacalcet on cardiovascular pa-
rameters in peritoneal dialysis patients with advanced
secondary hyperparathyroidism) of patients undergoing
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peritoneal dialysis (PD), both medical and surgical treatments
are options for secondary hyperparathyroidism.49 Para-
thyroidectomy obviated titration of multiple drugs and
showed a more substantial increase in BMD.50 Observational
data from the Japanese Society for Dialysis Therapy Renal
Data Registry have indicated parathyroidectomy is associated
with lower mortality than the use of calcimimetics.51

In adults with persistent hyperparathyroidism after kidney
transplantation, results from a randomized, placebo-
controlled trial indicated cinacalcet effectively corrects both
hypercalcemia and hypophosphatemia.52 In that study, cina-
calcet showed no effect on BMD change. A small, 12-month,
open-label, randomized study evaluated whether subtotal
parathyroidectomy is more effective than cinacalcet for con-
trolling hypercalcemia caused by persistent hyperparathy-
roidism after kidney transplant.53 Subtotal parathyroidectomy
induced greater reductions of PTH and calcium and was
associated with a significant increase in femoral neck BMD.
Although older studies had raised concerns about a negative
impact of parathyroidectomy on allograft function, a recent
meta-analysis showed no long-term differences.54 Given that
reversibility of secondary hyperparathyroidism occurs in a
substantial proportion of patients in the first year after kidney
transplantation, there is rationale for using calcimimetics in
this period. Beyond 1 year, the optimal therapeutic approach
(calcimimetics vs. parathyroidectomy) remains to be defined.
Calcimimetics are off label in this indication.53

Targeting bone. There are no primary randomized
controlled trial data on fracture prevention efficacy and safety
profiles of bone-targeting agents dedicated to patients with
CKD G3b–G5D. Studies of bone-targeting agents in CKD
include secondary analyses of the US Food and Drug
Administration fracture registration trials for novel agents
and primary clinical trial data for areal BMD.

Based on secondary analyses of US Food and Drug
Administration trials, anti-resorptive and anabolic agents in-
crease BMD and lower fracture risk in patients with mild to
moderate CKD.55–57 A clinical trial of denosumab and oral
alendronate in patients receiving dialysis demonstrated
increased BMD at the spine in both groups.58 A clinical trial
of romosozumab in patients receiving dialysis demonstrated
increased BMD at the spine and hip.59 Romosozumab, fol-
lowed by denosumab, in patients with kidney failure resulted
in increased BMD at the total hip and femoral neck.60 A
clinical trial of therapy with teriparatide based on bone
turnover markers reported improved BMD in patients with
low bone turnover.61

All bone-targeting agents have possible safety concerns for
patients with CKD, although in many cases the concerns are
similar when these drugs are used in the general population.
For many (bisphosphonates, teriparatide, and romosozumab
for males), their use in patients with CKD G4–G5D is off
label. Concerns for adverse effects include the following: (i)
for bisphosphonates: nephrotoxicity, and as in the general
population, osteonecrosis of the jaw, and atypical femoral
fractures; (ii) for denosumab62,63: osteonecrosis of the jaw,
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atypical femoral fractures, hypocalcemia (as in the general
population),63,64 and rebound bone resorption65; (iii) for
teriparatide and abaloparatide: hypercalcemia and hyperuri-
cemia; and (iv) for romosozumab: hypocalcemia, and, as in
the general population, cardiovascular risk.

In the kidney transplant population, areal BMD and
changes in bone turnover markers may help to identify pa-
tients at high risk for bone loss and fractures.21 Bisphosph-
onate therapy may reduce fracture risk and bone pain after
kidney transplantation66 and can be considered in high-risk
patients based on areal BMD and clinical risk factors.

Nonpharmacologic interventions
Nonpharmacologic interventions to lower fracture risk have
benefits in all patients with osteoporosis. In the general
population, between 38%‒54% of the variance in areal BMD
may be explained by environmental factors.67 Non-
pharmacologic approaches include exercise, avoidance of
malnutrition and vitamin D deficiency, adequate dietary
calcium intake,68 smoking cessation, limiting alcohol intake,
and fall-prevention strategies. Nonpharmacologic approaches
can be implemented as first-step measures and should be
considered in all patients with (and without) CKD-associated
osteoporosis.

CKD-ASSOCIATED CARDIOVASCULAR DISEASE
Terminology
Vascular calcification, usually referring to arterial calcifica-
tion, is a complex process with numerous etiological factors,
including age, diabetes, inflammation, atherosclerosis, and
deficiency of protective agents. Disturbed mineral metabolism
is an important driver of CKD-associated cardiovascular
disease, especially vascular calcification, with hyper-
phosphatemia playing a central role. Significant progress has
been made in understanding the pathophysiology of vascular
calcification in different vascular beds; however, vascular bed
pathology is not directly correlated with serum levels of cal-
cium and phosphate, and effective therapeutic interventions
have been elusive. Besides vascular calcification, left ventric-
ular hypertrophy is another prominent feature of severe CKD.
Arterial calcification and elevated FGF23 levels may be
significantly involved in the development of left ventricular
hypertrophy and consequent congestive heart failure in CKD.
To some extent, the same pathophysiology that drives vascular
calcification may contribute to valvular calcification, which,
in turn, can contribute to left ventricular hypertrophy and
heart failure and is associated with sudden death in CKD.

Diagnostics
Although baseline and progression of coronary artery calcium
score and aortic calcification scores predict all-cause mortal-
ity,69,70 it is not known whether slowing the progression of
vascular calcification leads to improved prognosis or reduced
mortality. Moreover, current clinical imaging techniques do
not differentiate between calcified atherosclerotic plaques and
medial calcification, a difference that may be clinically
Kidney International (2025) 107, 405–423
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relevant. In children, data on vascular calcification progres-
sion and potential risks are few and insufficient for under-
standing their implications.

Imaging. Calcification, as detected by electron-beam or
multidetector CT,71,72 echocardiogram,73–75 and X-ray
scoring systems,76,77 is associated with adverse outcomes in
CKD. There are few CKD-related data using standard chest
CTor mammography. Radiology international guidelines now
recommend all chest CTs be read with a coronary artery
calcium score. All modalities have limitations, such as inter-
operator variability, incomplete sensitivity, lack of electro-
cardiographic gating, or measurement variation. For clinical
trial purposes, only CT scans are sensitive enough to detect
changes in calcification.

Although CT scans are useful for research purposes, their
value in guiding treatment decisions related to the use or type
of phosphate binders or calcium exposure is not clear. The
role of discriminating intimal versus medial calcification in
imaging is also not clear, nor is whether progression of
vascular calcification is a meaningful endpoint.

Biomarkers. In the future, together with imaging tech-
niques, biomarkers may define risks and aid personalized
decisions on therapeutic approaches. At the forefront are
parameters of calciprotein metabolism, including quantity of
serum calciprotein monomers and calciprotein particles
(CPPs) and the calcification propensity score test. Thus far,
these have been evaluated separately using different assays or
technical platforms, making it difficult to compare their
relative performance. Associations of shortened calcification
propensity score or increased CPPs with vascular calcification
progression or mortality have been noted in several studies,
but this association has not been universally consistent.78–83 It
is not clear if parameters of calciprotein metabolism are
markers of vascular calcification or whether changes in them
impact clinical outcomes.

Treatment targets
Phosphate. Since 2017, no data have emerged that would

prompt reevaluation of phosphate targets across the spectrum
of CKD. Results of ongoing pragmatic trials are not expected
until 2026 at the earliest. In CKD G3–G4, there are no trials
demonstrating that phosphate-lowering treatments in a
setting of normophosphatemia or lowering FGF23 improves
meaningful clinical outcomes; results from 2 studies are
anticipated (Ferric Citrate and Chronic Kidney Disease in
Children [FIT4KiD] trial,84 FRONTIER [Ferric Citrate for the
Prevention of Renal Failure in Adults With Advanced Chronic
Kidney Disease, ClinicalTrials.gov NCT05085275]). In pa-
tients with CKD G3b–G4 without overt hyperphosphatemia,
2 studies found no benefit of phosphate binders on serum
FGF23 levels or carotid-femoral pulse wave velocity.85,86

In CKD G5D, the benefits of strict phosphate control are
being evaluated. Pilot studies have shown feasibility of having
separate phosphate-level targets in a trial setting and have also
indicated decreased risk of coronary artery calcification pro-
gression in patients with lower phosphate levels.87
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PHOSPHATE, a large trial including patients undergoing
either hemodialysis or PD (ClinicalTrials.gov NCT03573089)
is underway, and its results could impact clinical recom-
mendations, regardless of outcome.

Calcium. There are no trial data informing the optimal
targets of serum calcium. With regard to oral calcium load for
the adult general population, a calcium intake of 800‒1000
mg/d is recommended for optimal skeletal health (European
Food Safety Authority,88 US Institute of Medicine guide-
lines89). In CKD, 2 formal calcium balance studies have
indicated that calcium balance is neutral to negative at 800–
1000 mg calcium/day, but positive at 1500‒2000 mg calcium/
day.90,91 A recent European calcium consensus article
expressed concern for skeletal harm with too little calcium
intake and recommended a total calcium intake of at least
800‒1000 mg/d in patients with CKD.68 Observational data
indicate that 40%‒60% of patients with CKD G5D have a
calcium intake of <800 mg/d, but intake can increase
dramatically with use of calcium-containing phosphate
binders. In CKD G5D, overall calcium balance also depends
on dialysate calcium concentrations.92,93

Measurement of ionized calcium in the blood can be
logistically challenging, but albumin-adjusted calcium equa-
tions do not accurately estimate ionized calcium; therefore,
abnormalities in ionized calcium levels can escape detec-
tion.94–97 Hypercalcemia consistently associates with
increased all-cause mortality in most observational studies,
with a J- or U-shaped relationship between serum calcium
and mortality.98–100 Hypocalcemia detected by ionized cal-
cium determination has also been associated with increased
all-cause mortality,96 and a recent large, observational study
found increased risk of cardiovascular mortality with hypo-
calcemic episodes, regardless of cause.101

During treatment with calcimimetics, severe and
symptomatic hypocalcemia is not uncommon and likely
underreported. Severe hypocalcemia (defined as total or
albumin-corrected calcium <7.5 mg/dl or <1.87 mmol/l) is
reported in 7%‒9% of patients in trials and observational
data sets.102–106 In trials, the risk of hypocalcemia-related
symptoms is higher with intervention versus placebo, and
these include muscle spasms (11.5% vs. 6.6%), myalgia (1.6%
vs. 0.2%), paresthesia (4.8% vs. 0.6%), and hypoesthesia
(1.8% vs. 0.8%).102 Previous guideline recommendations
argued for permissible hypocalcemia with calcimimetic use.2

However, given that the risks of severe hypocalcemia are
well understood, most would find it reasonable to consider
the cause of, and correct, hypocalcemia.

There are no new high-quality data to inform the optimal
ionized calcium concentration in the dialysate. Observational
studies support the current recommendation of a dialysate
calcium concentration of 1.25–1.50 mmol/l. Calcium mass
transfer during dialysis is not easily predictable, but the
ionized calcium dialysate-plasma gradient is a major deter-
minant.107 Calcium mass transfer may be influenced by
different dialysis techniques (standard acetate or bicarbonate,
predilution or postdilution hemodiafiltration, daily or
413
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nocturnal, continuous ambulatory PD or automated PD with/
without icodextrin).108 Currently, the calcium mass transfer is
not directly measured for each patient but is estimated on the
basis of study data. In general, calcium mass transfer is pos-
itive with a dialysis calcium concentration of 1.75 mmol/l,
neutral with 1.25‒1.50 mmol/l, and negative with 1.00
mmol/l.109–112 A dialysate calcium concentration of 1.75
mmol/l is associated with vascular calcification and increased
mortality risk,113,114 and a dialysate calcium concentration
of <1.25 mmol/l is associated with intradialytic cardiovas-
cular instability and risk of hospitalization.115,116

We do not, at present, have any means of directly assessing
calcium balance or internal calcium fluxes, particularly cal-
cium deposition in tissues. A future Work Group could
consider guidance for a sufficient calcium intake in patients
with CKD, including the safe upper limit to avoid the risk of
vascular calcification progression.

Treatments
Vascular calcification in CKD is a complex and multisystem
disease for which modification of multiple parameters is often
needed,117 requiring a personalized approach.

Phosphate lowering. Early evidence indicated calcium-
containing phosphate binders increase the risk of vascular
calcification progression.118,119 A subsequent trial found no
excess risk of all-cause or cardiovascular mortality with cal-
cium- versus non–calcium-containing phosphate binders, but
there was a signal for harm with calcium-containing binders
in persons aged >65 years.120,121 Since 2017, several ran-
domized controlled trials and observational and post hoc
analyses compared lanthanum carbonate or sevelamer car-
bonate with calcium-containing binders or placebo, and
overall there was not a consistent benefit in terms of reduced
progression of vascular calcification associated with the
calcium-free compounds (Table 3).70,86,87,122–125 In
IMPROVE-CKD (IMpact of Phosphate Reduction On
Vascular End-points in Chronic Kidney Disease), after 96
weeks, lanthanum carbonate did not increase likelihood of
arterial stiffness or vascular calcification compared with pla-
cebo in CKD G3b and G4.86 In IMPROVE-CKD, phosphate
levels were normal at baseline, which may be indicative of a
low risk for calcification progression. In the randomized
LANDMARK trial (Outcome Study of Lanthanum Carbonate
Compared with Calcium Carbonate on Cardiovascular Mor-
tality and Morbidity in Patients with Chronic Kidney Disease
on Hemodialysis), with participants undergoing hemodialysis
with hyperphosphatemia and having at least 1 vascular
calcification risk factor, treatment of hyperphosphatemia with
lanthanum carbonate compared with calcium carbonate did
not result in a significant difference in composite cardiovas-
cular events or all-cause mortality.125

While LANDMARK was a high-quality study, the trial
ultimately had reduced statistical power from not meeting the
prespecified inclusion target and having a lower-than-
anticipated rate of events. The study was based in Japan,
where dietary calcium intake is known to be low, and the
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elemental calcium dose from the binder used was also low, at
600‒1200 mg calcium/day. In Japan, cardiovascular risk
profiles are different than in the European Union and United
States, as are mineral metabolism targets. The study also
excluded patients with intact PTH >240 pg/ml. Despite study
limitations, the results suggest that it may be better to avoid a
high cumulative calcium load than to discourage or limit use
of calcium-based binders altogether, as suggested in the 2017
Guideline update.

Considering the overall phenotype of the patient allows for
a distinction between different phosphate sources. For
example, in states of high bone turnover, the skeleton, rather
than dietary intake, may be the major source of hyper-
phosphatemia. Targeting hyperparathyroidism and high bone
turnover (by parathyroidectomy,126 calcimimetics,102,106,127

or anti-resorptives128) results in reductions in serum phos-
phorus levels. The phosphate-lowering effect of targeting
bone turnover could potentially be anticipated by baseline
levels of PTH or bone turnover markers, including bone-
specific alkaline phosphatase.58,106,128 It is, however, not
clear whether the effect is transient or could improve long-
term phosphate control.

Additional novel approaches for phosphate control include
adopting certain plant-based diets,129 using tenapanor in
addition to classic phosphate binders,130–133 or adjusting in-
tensity of dialysis. Patiromer may have phosphate-lowering
effects but needs further investigation.134 Ongoing trials
(FIT4KID,84 FRONTIER [NCT05085275]; expected study
completion 2024) of phosphate-lowering therapies include
patient-relevant outcomes.

Hypocalcemia and hypercalcemia. There is no new high-
level evidence to guide measures for preventing iatrogenic
hypocalcemia in high-risk situations. Several recent reports
highlight the risks of iatrogenic hypocalcemia in situations of
rapid bone (re)-mineralization after correction of hyper-
parathyroid bone disease (hungry bone syndrome) following
parathyroidectomy, anti-resorptive therapy,63 and potent
calcimimetics.135,136 To correct severe and/or symptomatic
hypocalcemia, i.v. or oral calcium, i.v. or oral vitamin D re-
ceptor activators, and high calcium in dialysate are typically
used.126 In patients undergoing parathyroidectomy, preoper-
ative and postoperative use of active vitamin D derivatives
may reduce the incidence of severe hypocalcemia.137,138 Data
from retrospective studies and pilot trials have been used in
prediction models using bone turnover markers to guide
postoperative need for calcium supplementation.64,139–141

One observational study suggested that a short-acting
bisphosphonate could be used to attenuate the hungry bone
syndrome after parathyroidectomy; however, there is concern
that this could potentially limit bone remineralization.138

Transplantation. Mineral metabolism disturbances after
kidney transplantation are highly common and do not often
resolve spontaneously, with their severity partly depending on
their management prior to transplantation.142,143 Hypo-
phosphatemia associates with bone mineralization de-
fects.144,145 Hyperparathyroidism both with and without
Kidney International (2025) 107, 405–423



Table 3 | Clinical trials since 2017 pertaining to phosphate lowering

Study reference
No. of patients (population

specifics) Intervention group Control group Duration Measures/outcome Results summary

CKD G3–G5

Toussaint et al., 86 2020
(IMPROVE-CKD)

278 (G3b–G4) Lanthanum
500 mg TID

Placebo
TID

96 wk cfPWV
AAC

No difference in cfPWV or AAC between
groups

Kovesdy et al.,122 2018 120 (G3–G5) Lanthanum Calcium or dietary
intervention

12 mo CAC
PWV

No difference in CAC or PWV between
groups

CKD G5D

Fujii et al.,123 2018 108 (G5D, incident HD) Lanthanum (open label) Calcium carbonate
(open label)

18 mo CAC
echocardiogram

No difference in CAC change between
groups

Cardiac dimensions and systolic function
were improved in lanthanum group
compared with placebo

Ogata et al.,125 2021
(LANDMARK)

2374 (G5D, prevalent HD
with 1 CV risk factor)

Lanthanum (open label) Calcium carbonate
(open label)

3.16 yr
median f/u

Composite CV
event

No difference in composite CV event rate

Isaka et al.,87 2021 160 (G5D, HD) Sucroferric
oxyhydroxide (open
label)

Lanthanum (open
label)

12 mo CAC No difference in % change in CAC
between binder groups

% change in the strict PO4 (median of
8.52; IQR, –1.0 to 23.9) group was
significantly lower than standard PO4

group (median change of 21.8; IQR,
10.0–36.1) P ¼ 0.006

AAC, abdominal aorta calcification; CAC, coronary artery calcification; CV, cardiovascular; cfPWV, carotid-femoral pulse wave velocity; f/u, follow-up; HD, hemodialysis; IMPROVE-CKD, IMpact of Phosphate Reduction On Vascular End-
points in Chronic Kidney Disease; IQR, interquartile range; LANDMARK, Outcome Study of Lanthanum Carbonate Compared with Calcium Carbonate on Cardiovascular Mortality and Morbidity in Patients with Chronic Kidney
Disease on Hemodialysis; PO4, phosphate; PWV, pulse wave velocity; TID, 3 times per day.
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hypercalcemia post-transplant has been associated with
increased risk of graft failure and all-cause mortality, although
the association has not been consistently found.144,146–151

There are no trials to guide therapy of mineral metabolism
disturbances after kidney transplantation. Calcimimetics
correct high calcium and low phosphate levels in persistent
hyperparathyroidism, but further studies are needed to
establish intervention thresholds and treatment targets.52

Future guidelines should distinguish between persistent
(also called tertiary) and secondary hyperparathyroidism, as
these differ both in biochemical presentation and in
pathophysiology.

Pediatrics. Age-related normal ranges of serum calcium,
phosphorus, and alkaline phosphatase as well as stage-
dependent PTH target ranges are used for children with
CKD. Practice points for managing hypocalcemia and hy-
percalcemia have been given in recent consensus arti-
cles.93,152–155

Calcification reduction
Vitamin K. In small study cohorts, vitamin K1 and MK-7

(menaquinone-7) appeared to be safe for patients with CKD.
However, despite consistently and substantially decreasing
serum dephosphorylated uncarboxylated matrix Gla protein
in multiple studies, vitamin K compounds did not consis-
tently attenuate calcification progression in patients with
advanced CKD (Table 4).156–171 This may relate to altered
MK-7 pharmacokinetics in advanced CKD.172 Results from
the VitaVasK pilot trial supplementing vitamin K1 during
hemodialysis sessions demonstrated significant reductions of
thoracic aorta calcification progression in association with
significant decreases in dephosphorylated uncarboxylated
matrix Gla protein serum levels over 18 months.162 However,
the difference in coronary artery calcification did not reach
the level of statistical significance, probably because of
recruitment difficulties, high dropout rate, and small sample
size.

Sodium thiosulfate. A meta-analysis of 6 randomized and
nonrandomized studies suggests sodium thiosulfate may
attenuate vascular calcification in patients receiving mainte-
nance hemodialysis.173 Dosages have varied from 12.5‒25 g/
session, 2‒3 times/week, for 3‒6 months. In one clinical trial,
a significant decline in hip bone mineral density was
observed,174 with multiple dose-dependent adverse effects
identified, highlighting the importance of studying both
calcification and bone outcomes simultaneously.

Magnesium. In animal models, magnesium prevents
phosphate-induced vascular calcification.175 In vitro, the
protective effects have not been dependent on increasing
intracellular magnesium but rather appeared to be due to
delayed extracellular formation of hydroxyapatite.176 Also
in vitro, magnesium delays transition of CPPs from benign
primary CPPs to likely toxic secondary CPPs.177 However,
data from clinical studies using magnesium-based in-
terventions have been contradictory. While 1 clinical trial
from Japan showed that oral magnesium oxide can
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decrease the progression of coronary artery calcification in
patients with CKD not receiving dialysis,168 a trial from
Europe in a comparable population did not find any
benefit of magnesium hydroxide.169 Gastrointestinal
adverse effects are a limitation of magnesium and may
reduce adherence. Dial-Mag Canada (NCT04079582), a
pragmatic cluster-randomized clinical trial, will evaluate
the effects of administering 2 separate concentrations of
magnesium in the dialysate (0.5 or 0.75 mmol/l) in
>25,000 patients on hemodialysis (estimated completion
2028).

SNF472. SNF472 is a hexaphosphate phytate usually
present in wheat. This molecule possesses a pyrophosphate-
like structure and is being investigated for its potential to
inhibit calcification. It is minimally absorbed in human in-
testine, but with parenteral administration, it reaches high
plasma concentrations. In the CaLIPSO (Effect of SNF472
on Progression of Cardiovascular Calcification in End-Stage-
Renal-Disease Patients on Hemodialysis) trial, 2 doses (300
and 600 mg) demonstrated significant reductions in coro-
nary, valvular, and aortic calcification progression in he-
modialysis patients.178 The 600-mg dose may have impacted
bone density in a slightly negative way, whereas the 300-mg
dose showed no signal in this respect. SNF472 was also used
in a prospective trial in calciphylaxis patients (CALCI-
PHYX),179 in which similar improvements in wound healing
were seen in a placebo-controlled trial with SNF472, as
measured by a modified Bates Jensen Wound Assessment
Tool and Pain Visual Analogue Scale. Fewer deaths and
hospitalizations were observed in the group receiving
SNF472.180

Calciphylaxis
A special entity within the phenotype of CKD-associated
cardiovascular disease, calciphylaxis is a rare and life-
threatening complication of CKD-MBD. While serum cal-
cium and phosphate levels are not predictive of outcomes and
cannot be used for guiding therapy, limiting exposure to
excess calcium and phosphate is regarded as important in
managing this severe disorder. Calcification inducers (e.g.,
high doses of active vitamin D derivatives) or lack of in-
hibitors (e.g., vitamin K antagonism or deficiency, inflam-
mation) have been identified as potential risk factors for the
development of calciphylaxis. Use of vitamin K antagonists
for anticoagulation in patients undergoing dialysis is associ-
ated with an up to 11-fold increased risk of developing
calciphylaxis.181

For several reasons, skin biopsy is unable to reliably di-
agnose calciphylaxis. There are no established features or
validated histologic diagnostic criteria, and when standard
staining methods alone are used, biopsy findings are not
specific.182,183 Of biopsies done for suspected calciphylaxis,
30% have inadequate sampling.184 Reported sensitivity has
been variable (20%‒80%).184,185 In addition, skin biopsy
traumatizes vulnerable tissue and may trigger additional
nonhealing ulcers.
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Table 4 | Clinical trials evaluating calcification inhibitors

Study reference
No. of patients

(population specifics)
Intervention

group
Control
group

Duration,
mo

Measures/
outcome Results summary

CKD G5D

Oikonomaki et al.,156

2019
102 MK-7

200 mg/d
SC 12 CAC No difference in CAC progression

De Vriese et al.,157 2020
(Valkyrie trial)

88 (with AF) MK-7
2 mg TPW þ
rivaroxaban

Placebo 18 CAC
TAC
AVC

No difference in CAC, TAC, or AVC
progression

Levy-Schousboe
et al.,158 2021
(RenaKvit trial)

48 MK-7
360 mg/d

Placebo 24 cfPWV
CAC
AAC

No difference in cfPWV, CAC, or AAC
progression

Naiyarakseree et al.,159

2023
96 (with cfPWV

$10 m/s)
MK-7

375 mg/d
SC 6 cfPWV No difference in change in cfPWV

Haroon et al.,160 2023
(Trevasc-HDK trial)

178 MK-7
360 mg TPW

SC 18 CAC
AVC
PWV

No difference in CAC, AVC, or PWV
progression

Holden et al.,161 2023
(iPACK-HD trial)

86 (CAC > 30 AUs) K1
10 mg TPW

Placebo 12 CAC No difference in absolute or relative
change in CAC

Saritas et al.,162 2022
(VitaVasK trial)

60 (CAC > 100 mm3) K1
5 mg TPW

SC 18 TAC
CAC

TAC: 56% less progression in K1
group (P ¼ 0.039)

CAC: 68% less progression in K1
group (P ¼ 0.072)

Raggi et al.,163 2020 274 SNF472
300 mg or 600
mg i.v. TPW

Placebo 12 CAC
AVC

CAC: 11% (94% CI, 7%–15%)
increase in SNF group vs. 20%
(95% CI, 5%–24%) in placebo (P ¼
0.016)

AVC: 14% (95% CI, 5%–24%) increase
in SNF group vs. 98% (95% CI,
77%–123%) in placebo (P < 0.001)

Saengpanit et al.,164

2018 (Sodium-
Thiosulfate-
Hemodialysis study)

50 (CAVI $ 8) STS
1.25 g i.v. TPW

SC 6 CAC
CAVI

Decrease in CAVI with STS (mean
difference ¼ –0.53; 95% CI, –1.00
to –0.06; P ¼ 0.03)

Djuric et al.,165 2020 60 (AAC > 100 AUs) STS
25 g/1.73 m2

Placebo 6 AAC Similar increase in AAC between
groups

Bian et al.,166 2022 50 STS
0.18 g/kg TPW

SC 6 CAC CAC score decreased in STS group
(between group difference in
progression was not reported)

CKD G3–G5

Witham et al.,167 2020
(K4Kidneys trial)

159 MK-7
400 mg daily

Placebo 12 cfPWV
AAC

No difference in PWV or AAC
progression

Sakaguchi et al.,168

2019
123 Magnesium

oxide
8.3 mmol/
d (elemental
magnesium:
198 mg)

SC CAC Less percentage change in CAC in
magnesium oxide group (11.3%
vs. 39.5%; P < 0.001)

Bressendorff et al.,169

2023 (MAGiCAL-CKD
trial)

148 Magnesium
hydroxide
30 mmol/d

Placebo 12 CAC No difference in baseline-adjusted
CAC score

Kidney transplant recipients

Lees et al.,170 2021
(ViKTORIES trial)

90 K1
5 mg TPW

Placebo 12 Vascular
stiffness
CAC

No difference in progression of
vascular stiffness or CAC

Eelderink et al.,171 2023 40 MK-7
360 mg/d

Placebo 3 T50
PWV

No difference in T50
Decrease in progression of PWV in

MK-7 group (P ¼ 0.010)

AAC, abdominal aorta calcification; AU, Agatston unit; AVC, aortic valve calcification; CAC, coronary artery calcification; CAVI, cardio-ankle vascular index; cfPWV, carotid-
femoral pulse wave velocity; CI, confidence interval; iPACK, Inhibit Progression of Coronary Artery Calcification With Vitamin K in HemoDialysis Patients; K1, vitamin K1;
MAGICAL-CKD, The Effect of Oral Magnesium Supplementation on Vascular Calcification in Chronic Kidney Disease—A Randomized Clinical Trial; MK-7, menaquinone-7; PWV,
pulse wave velocity; SC, standard care; STS, sodium thiosulfate; T50, calcification propensity score; TAC, thoracic aorta calcification; TPW, 3 times per week; Trevasc-HDK,
Treatment to Reduce Vascular Calcification in Hemodialysis Patients Using Vitamin K; ViKTORIES, Vitamin K in kidney Transplant Organ Recipients: Investigating vEssel Stiffness.
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A reduced dose of the non–vitamin K oral anticoagulant
apixaban may be a safe and effective alternative to warfarin in
patients with kidney failure on dialysis who have atrial
fibrillation with calciphylaxis.186 Sodium thiosulfate is widely
used for treating calciphylaxis; however, it has never been
evaluated in a randomized controlled trial, and a recent meta-
analysis did not find an association between sodium thio-
sulfate and wound improvement or survival.187 A multimodal
approach to managing calciphylaxis has been suggested.188

Important management aspects include advanced care plan-
ning, pain control, shared decision-making, and dialysis
treatment options.189 Future guidelines may consider
including practice points on calciphylaxis care and future
studies should also consider nonpharmacotherapy in-
terventions, such as wound care.
SUMMARY AND CONCLUSIONS
Recent evidence generally supports the recommendations in
the 2017 CKD-MBD Guideline update. Future updates may
consider recommendations and practice points within a
framework of 2 clinical syndromes: CKD-associated osteo-
porosis and CKD-associated cardiovascular disease to clini-
cally characterize CKD-MBD, which could assist clinicians in
the large areas of equipoise in clinical decision-making in
CKD-MBD. Other changes could include considering renal
osteodystrophy as part of the osteoporosis spectrum, a more
sensitive approach to calcium balance, and a more systematic
incorporation of bone turnover biomarkers in guiding man-
agement of bone health. In the future, use of artificial intel-
ligence systems could aid in predicting risks and informing
management strategies in CKD-MBD. Other opportunities
and priorities for future research are depicted in Table 1.
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