### ANEMIA AND HEALTH-RELATED QUALITY OF LIFE MEASURES: PSYCHOMETRIC CHARACTERISTICS OF INSTRUMENTS

Dennis A. Revicki, PhD Miriam Kimel, PhD

Center for Health Outcomes Research, United BioSource Corporation, Bethesda, Maryland, USA

Prepared for the KDIGO Controversies Conference: Coordination of Clinical Practice Guidelines for Anemia in CKD, New York, NY, October 15, 2007

### **OVERVIEW**

- Why ask patients about their health status?
- Development and psychometric evaluation of health status measures
- Summary of psychometric qualities of frequently used HRQL measures
  - Content coverage
  - Measurement qualities
- Future of HRQL measurement
  - NIH PROMIS initiative

### WHY ASK PATIENTS ABOUT THEIR HEALTH STATUS?

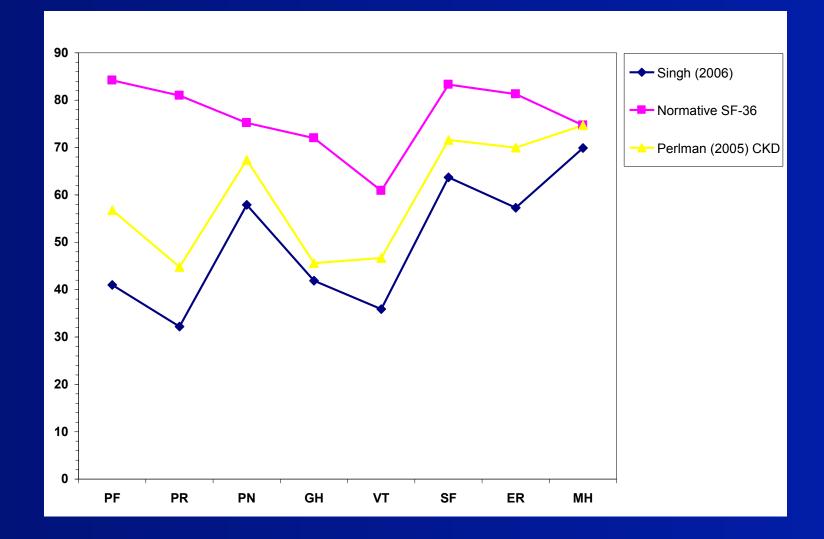
- HRQL data describe the impact of treatment and disease on symptoms, functioning and well-being.
- Patients provide a unique perspective on the impact of disease and treatment on their functioning and well-being
- Physiologic, laboratory and clinician evaluations are associated with but not identical to HRQL measures
- HRQL measures extend and translate clinical endpoints

### **KEY CONCEPTS AND ASSUMPTIONS**

- Patient's experience provides a unique and valuable contribution to understanding treatment effectiveness
- Information provided by patient is inherently subjective
- Scientific methods for measuring subjective outcomes are well-developed and are foundation of HRQL assessment
- Need scientifically adequate clinical trial designs and statistical analyses



"Objective" "Subjective" Exercise test versus physical functioning, r = 0.40


## HRQL VERSUS EFFICACY AND SAFETY

- HRQL is the ultimate outcome of health care interventions (implies survival)
- No single outcome adequately represents results of treatment
- HRQL assesses integrated effects of treatment

## HRQL AND CHRONIC KIDNEY DISEASE

- CKD is associated with broad and meaningful impairment to HRQL outcomes
- HRQL measures predict mortality in CKD patients, even after adjustment for demographic and clinical variables
- Treatments for anemia have demonstrated impact on symptoms and functioning

### HEALTH STATUS IMPAIRED IN CKD PATIENTS



### COMPARISON OF MEAN QOL SCORES FOR PATIENTS WITH CKD, END-STAGE RENAL DISEASE, AND THE GENERAL POPULATION

|                   | RRI-CKD Study | Dialysis Patients* | General Population |
|-------------------|---------------|--------------------|--------------------|
| PCS               | 37.3 (11.6)   | 33.1 (10.7)‡       | 50.0 (10.0)‡       |
| MCS               | 50.0 (10.3)   | 46.6 (11.9)‡       | 50.0 (10.0)        |
| Physical Function | 56.8 (29.4)   | 40.8 (29.4)‡       | 84.2 (23.3)‡       |
| Physical Role     | 44.9 (42.6)   | 31.7 (39.3)‡       | 81.0 (34.0)‡       |
| Physical Pain     | 67.4 (27.1)   | 59.0 (29.2)‡       | 75.2 (23.7)‡       |
| General Health    | 45.6 (20.0)   | 40.2 (22.1)‡       | 72.0 (20.3)‡       |
| Mental Health     | 74.7 (17.4)   | 67.3 (21.7)‡       | 74.7 (18.1)        |
| Emotional Role    | 70.0 (40.4)   | 51.8 (44.8)‡       | 81.3 (33.0)‡       |
| Social Function   | 71.6 (28.2)   | 62.1 (29.1)‡       | 83.3 (22.7)‡       |
| Vitality          | 46.7 (22.7)   | 42.9 (23.2)‡       | 60.9 (21.0)‡       |

NOTE: All scales are from 0 to 100, with higher numbers indicating better QOL.

\*Data from the DOPPS (n = 2,855).

 $\pm Data$  from the SF-36 manual (n = 2,474).

‡P < 0.0001 compared with patients with CKD.

### SURVIVAL PROPORTIONAL HAZARDS MODEL\*

|              | Sign of     |                  | Percent<br>Survival<br>Change Per<br>Unit | 95% Confidence<br>Interval for Percent<br>Survival Change Per | Р       |
|--------------|-------------|------------------|-------------------------------------------|---------------------------------------------------------------|---------|
| Covariate    | Coefficient | Unit of Analysis | Change <del>†</del>                       | Unit                                                          | Value‡  |
| Albumin      | -           | 0.1 g/dL         | +10.0                                     | 6.2 to 14                                                     | <0.0001 |
| Age          | +           | 1 yr             | -2.8                                      | 1.4 to 4.1                                                    | 0.0002  |
| nPCR         | -           | 0.1 g/kg/d       | +17.2                                     | 5.4 to 27                                                     | 0.0053  |
| PCS          | -           | 5 points         | +10.4                                     | 1.1 to 18                                                     | 0.0226  |
| Kt/V         | -           | 0.1 Kt/V         | +10.8                                     | 0.6 to 19                                                     | 0.0373  |
| Is diabetic  | +           |                  |                                           |                                                               | 0.1739  |
| Is not white | -           |                  |                                           |                                                               | 0.1773  |
| Is male      | +           |                  |                                           |                                                               | 0.4492  |
| MCS          | -           | 5 points         | +1.4                                      | -6.5 to 8.9                                                   | 0.7280  |

\* For the model, *P* < 0.0001 (Wald)

† The percent change in the probability of survival per unit change of the covariate.

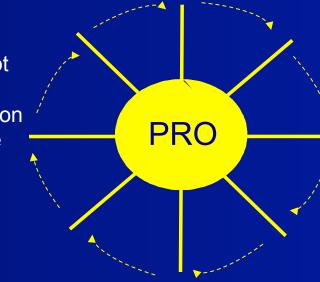
‡ Chi-squared.

Source: DeOreo et al. 1997

### CORRELATIONS BETWEEN CHANGES IN HCT AND HRQL SCORES

#### CHANGES IN HCT

| Score             | Week 16 | Week 48 |
|-------------------|---------|---------|
| Energy            | 0.35*   | 0.37*   |
| Physical function | 0.37*   | 0.35*   |


\* P < 0.05

### A. Identify Concepts & Develop Conceptual Framework

Identify concepts and domains. Identify intended application and population Hypothesize expected relationships among concepts

### **D. Modify Instrument**

Revise measurement concept Change application Change mode of administration Adapt for culture or language Other modifications



### **B. Create Instrument**

Generate items Choose data collection method Choose recall period Choose response options Evaluate patient understanding Develop instructions Identify scoring Format instrument Assess burden Confirm conceptual framework Finalize items & instrument

#### **C. Assess Measurement Properties**

Evaluate reliability, validity, and ability to detect change Propose methods for interpretation

### MEASUREMENT ATTRIBUTES AND REVIEW CRITERIA FOR HRQL INSTRUMENTS

| Attribute                           | Criteria                                                            |
|-------------------------------------|---------------------------------------------------------------------|
| 1. Conceptual and measurement model | Content validity and framework for concept to be measured           |
|                                     | Conceptual and empirical basis for item content and subscales       |
| 2. Reliability                      | Internal consistency (homogeneity)                                  |
|                                     | Reproducibility (test-retest reliability)                           |
|                                     | Inter-rater reliability                                             |
| 3. Validity                         | Degree to which the instrument measures what it intends to measure. |
|                                     | Construct-related                                                   |
|                                     | Criterion-relayed                                                   |
|                                     |                                                                     |

### MEASUREMENT ATTRIBUTES AND REVIEW CRITERIA FOR HRQL INSTRUMENTS (CONTINUED)

4. Responsiveness

An instrument's ability to detect change over time

5. Interpretability

Degree to which one can assign easily understood meaning to an instrument's quantitative scores.

### **RESPONSIVENESS AND MID**

Recommended approach, and evolving consensus:

- Estimate the MID based on several anchor-based methods, with relevant clinical or patient-based indicators.
- Examine various distribution-based estimates (i.e., effect size, standardized response mean, etc.) as supportive information.
- Triangulate on a single value or small range of values for the MID.
- Confidence in a specific MID value evolves over time and is confirmed by additional research evidence, including clinical trial experience.

## HRQL MEASURES USED IN CKD

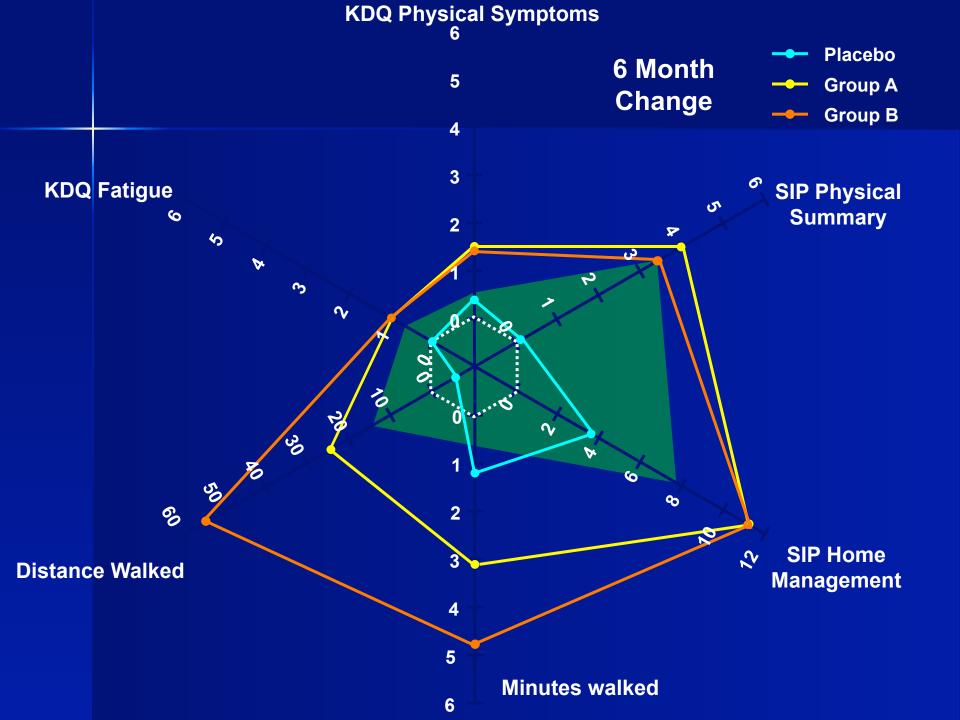
- Kidney Disease Questionnaire
  - Physical symptoms, fatigue, relationships, depression, frustration
- SF-36 Health Survey
  - Physical function, pain, vitality, role-physical, role-emotional, social function, general health, mental health
- Kidney Disease Quality of Life Questionnaire
  - Includes SF-36
  - Kidney disease-specific domains

# **Properties of HRQL Measures in Anemia in CKD**

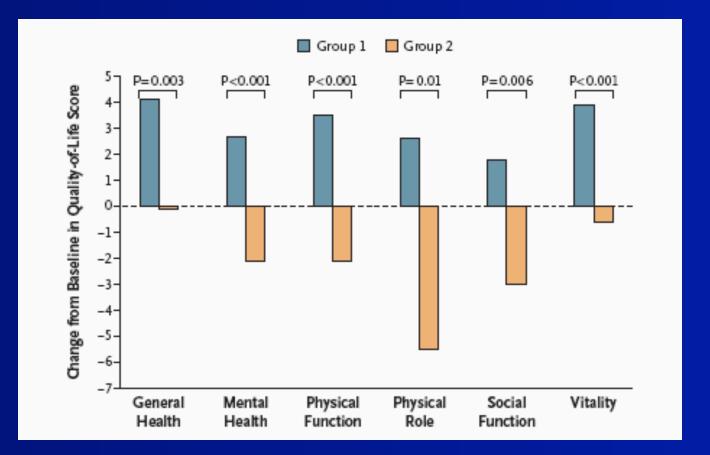
| Conceptual and Measurement Model                                                                                                    | KDQ | SF-36 | KDQOL-SF |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|
| Concept to be measured described                                                                                                    | ++  | ++    | ++       |
| Content validity based on literature review                                                                                         | 0   | ++    | ++       |
| Content validity based on focus groups or cognitive debriefing interviews with patients with chronic renal disease and anemia       | ++  | ++    | ++       |
| Content validity based on clinician or expert review                                                                                | ++  | ++    | ++       |
| Specific conceptual framework which identifies concept<br>and unique items (e.g., exploratory factor analysis<br>or via literature) | ++  | ++    | ++       |
| Evidence of scale variability (i.e., item and scale distributions, frequencies)                                                     | 0   | ++    | ++       |
| Intended level of measurement (e.g., ordinal, interval, ratio)                                                                      | +   | +     | +        |
| Record of item development (i.e., rational for item retention and deletion)                                                         | ++  | ++    | ++       |
| Rationale for recall period                                                                                                         | 0   | 0     | 0        |
| Reliability                                                                                                                         |     |       |          |
| Internal consistency reliability                                                                                                    | +   | ++    | ++       |
| Reproducibility                                                                                                                     | ++  | +     | +        |

# Properties of HRQL Measures in Anemia in CKD (continued)

| Conceptual and Measurement Model                    | KDQ | SF-36 | KDQOL-SF |
|-----------------------------------------------------|-----|-------|----------|
| Validity                                            |     |       |          |
| Content-related (see above)                         | ++  | ++    | ++       |
| Construct-related                                   | ++  | ++    | ++       |
| Criterion-related                                   | 0   | +     | 0        |
| Responsiveness                                      |     |       |          |
| Anchor-based                                        | +   | +     | +        |
| Distribution-based methods (i.e., effect size, SEM) | +   | +     | +        |
| Interpretability                                    |     |       |          |
| MID estimates                                       | 0   | 0     | 0        |
| Responder analysis                                  | 0   | 0     | 0        |
| Respondent Burden                                   |     |       |          |
| Time needed to complete                             | 0   | ++    | ++       |
| Reading and comprehension levels                    | 0   | 0     | 0        |
| Special requirements                                | 0   | 0     | 0        |
| Degree of missing data                              | 0   | 0     | 0        |


# Properties of HRQL Measures in Anemia in CKD (continued)

| Conceptual and Measurement Model                                          | KDQ | SF-36 | KDQOL-SF |
|---------------------------------------------------------------------------|-----|-------|----------|
| Alternate modes of administration                                         |     |       |          |
| Self-report                                                               | ++  | ++    | ++       |
| Interviewer-administered                                                  | 0   | ++    | 0        |
| Cultural and language adaptations or translations                         |     |       |          |
| # of available countries with cultural and linguistic translations        | ?   | 22    | 22       |
| # of available translations with evaluations of<br>measurement properties | ?   | 6     | 6        |


### RESULTS OF CESG ITT ANALYSES: TREATMENT VERSUS PLACEBO OVER TIME

| MEASURE                         | Mixed Model p-value | LOCF p-value |
|---------------------------------|---------------------|--------------|
| Exercise Capacity               |                     |              |
| Treadmill Stress Test           | 0.0001*             | 0.0001*      |
| 6-Minute Walk                   | 0.0498              | 0.0508       |
| Physical Function               |                     |              |
| SIP Physical Summary            | 0.0015*             | 0.0004*      |
| Ambulation                      | 0.0077              | 0.0127       |
| Body Care & Movement            | 0.0068              | 0.0016*      |
| SIP Home Management             | 0.0291              | 0.0387       |
| Symptoms                        |                     |              |
| KDQ Fatigue                     | 0.0001*             | 0.0001*      |
| KDQ Energy Symptom              | 0.0118              | 0.0314       |
| KDQ Weakness Symptom            | 0.0110              | 0.0187       |
| KDQ Physical Symptoms           | 0.0001*             | 0.0001*      |
| KDQ Shortness of Breath Symptom | 0.7969              | 0.7961       |

\* Statistically significant after application of Bonferroni adjustment



### CHANGES IN HRQL SCORES IN HIGH AND LOW HGB GROUP



## PHYSICAL FUNCTION SUPPORTING EVIDENCE

| MEASURE                         | STUDY             | DESIGN     | THRESHOLD* | CHANGE        | P-value       |
|---------------------------------|-------------------|------------|------------|---------------|---------------|
| Physician-assessed<br>Karnofsky | Evans (19900      | Single-arm | 10         | 5.0           | <0.001        |
|                                 | Delano (1989)     | Single-arm | 10         | 10.6          | Not evaluated |
|                                 | Harris (1991)     | Single-arm | 10         | 12.0          | <0.0001       |
| Patient-reported<br>Karnofsky   | Moreno (1996)     | Controlled | 10         | 12.6          | <0.0001       |
|                                 | Moreno (2000)     | Single-arm | 10         | 2.8           | <0.01         |
| SIP Physical Function           | McMahon (1992)    | Cross-over | 5.1        | 7.4           | <0.01         |
|                                 | Moreno (1996)     | Controlled | 6.8        | 5.8           | <0.0001       |
|                                 | McMahon (2000)    | Cross-over | 3.0        | 2.7           | <0.01         |
| KDQ Physical Symptoms           | Muirhead (1992)   | RCT        | 0.5        | 0.9           | <0.005        |
|                                 | Foley (2000)      | RCT        | 0.5        | 1.1           | Not evaluated |
|                                 | Furuland (2003)   | RCT        | 0.5        | 0.7           | <0.05         |
| SF-36 Physical<br>Functioning   | Beusterien (1996) | Controlled | 8          | 3.7           | <0.05         |
|                                 | Besarab (1998)    | RCT        | 8          | Not evaluable | <0.05         |
| Other: "Physical Activity"      | Barany (1990)     | Single-arm | 1          | 1             | <0.05         |
| Other: "Physical Activity"      | Barany (1993)     | Controlled | 0.04       | 0.06          | <0.01         |

Clinically Meaningful or Statistically significant

Not Clinically Meaningful or Statistically significant

\*Threshold indicates established clinically meaningful difference as defined in literature, or minimally important effect size of ½ SD baseline value

## **ENERGY SUPPORTING EVIDENCE**

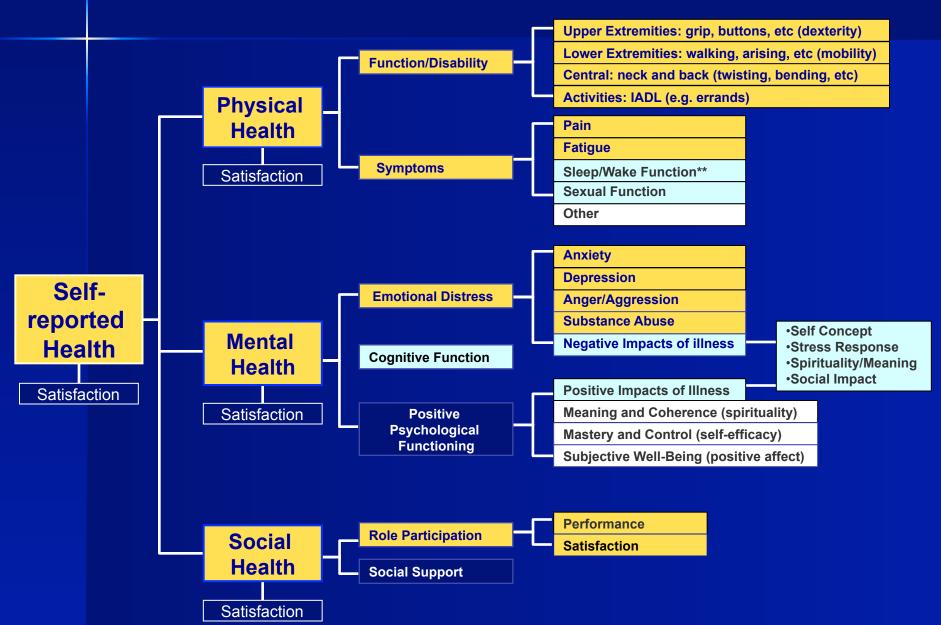
| MEASURE          | STUDY           | DESIGN     | THRESHOLD*    | CHANGE | P-value |
|------------------|-----------------|------------|---------------|--------|---------|
| KDQ Fatigue      | Muirhead (1992) | RCT        | 0.7           | 0.8    | <0.05   |
|                  | Foley (2000)    | RCT        | 0.71          | 0.04   | <0.01   |
| Fatigue Symptoms | Evans (1990)    | Single-arm | 0.19          | 0.26   | <0.001  |
|                  | Harris (1991)   | Single-arm | 0.87          | 1.66   | <0.0001 |
| NHP: Energy      | Evans (1990)    | Single-arm | Not evaluable | 27     | <0.001  |
| NHP: Energy (%)  | Auer (1990)     | Single-arm | 0.24          | 0.5    | <0.0005 |
|                  | Auer (1992)     | Single-arm | 0.22          | 0.52   | <0.0001 |

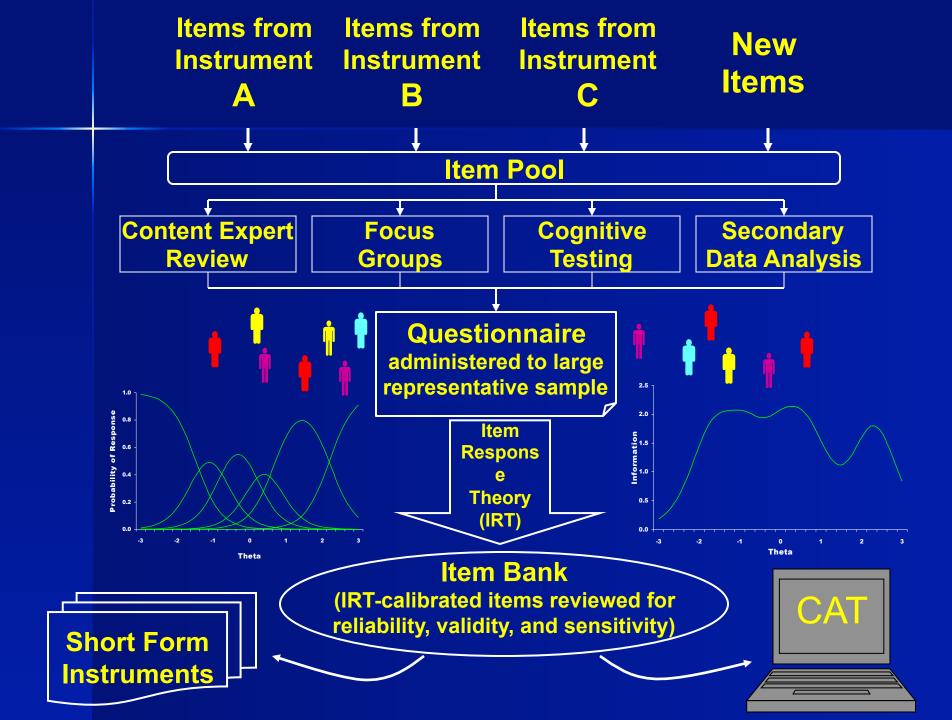
Clinically Meaningful or statistically significant

Not clinically meaningful or statistically significant

## EXERCISE CAPACITY SUPPORTING EVIDENCE

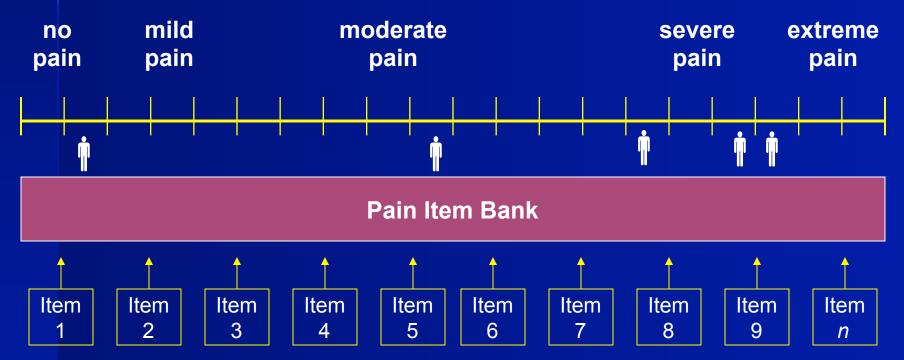
| STUDY                       | PROTOCOL                          | BASELINE | POST | CHANGE | P-value |
|-----------------------------|-----------------------------------|----------|------|--------|---------|
| VO <sub>2</sub> (ml/kg/min) |                                   |          |      |        |         |
| Mayer (1988)                | Cycle Ergometer Test <sup>†</sup> | 16.0     | 23.2 | 7.2    | < 0.02  |
| Baraldi (1990)              | Cycle Ergometer Test <sup>†</sup> | 24.1     | 32.6 | 8.5    | <0.05   |
| Grunze (1990)*              | Cycle Ergometer Test <sup>+</sup> | 1.19     | 1.37 | 0.18   | <0.05   |
| Robertson (1990)            | Cycle Ergometer Test <sup>†</sup> | 15.3     | 17.8 | 2.5    | <0.0005 |
| Lundin (1991)               | Cycle Ergometer Test <sup>†</sup> | 15.1     | 22.7 | 7.6    | <0.003  |
| Metra (1991)                | Cycle Ergometer Test <sup>†</sup> | 21.4     | 26.6 | 5.2    | <0.001  |
| Lewis (1993)                | Weber Treadmill Protocol          | 18.7     | 25.1 | 6.4    | <0.05   |
| Marrades (1996)             | Cycle Ergometer Test <sup>†</sup> | 25.4     | 33.1 | 7.7    | 0.003   |
| Treadmill Test (I           | minutes walked)                   |          |      |        |         |
| Robertson (1990)            | Cycle Ergometer Test <sup>†</sup> | 6.45     | 7.60 | 1.15   | <0.0005 |
| Lundin (1991)               | Maximal Treadmill Test            | 6.0      | 9.1  | 3.1    | <0.001  |
| Hase (1993)                 | Bruce Treadmill Protocol          | 4.63     | 6.40 | 1.77   | <0.01   |
| Lewis (1993)                | Weber Treadmill Protocol          | 15.2     | 21.4 | 6.2    | <0.05   |
| Metra (1991)                | Cycle Ergometer Test <sup>†</sup> | 9.62     | 11.9 | 2.32   | <0.05   |
| 6-minute walk               |                                   |          |      |        |         |
| Harris (1991)               | 6 Minute Walk Test <sup>‡</sup>   | 400      | 600  | 200    | <0.001  |


Statistically significant


**†** = Cycle ergometer tests vary in cycle speed, inclination, and termination ; **‡** = meters walked, **\*** = L/min

## FUTURE OF PRO MEASUREMENT: NIH PROMIS

- Improve assessment of self- reported symptoms and domains of HRQL for application across a wide range of chronic diseases
- Develop and test a large bank of items for measuring PROs
- Develop computer-adaptive testing (CAT) for efficient assessment of PROs
- Create a publicly available, flexible, and sustainable system allowing researchers to access to item banks and CAT tools


### **PROMIS DOMAIN HIERARCHY**





### **ITEM BANKS**

## An item bank is a large collection of items measuring a single domain, e.g., pain...



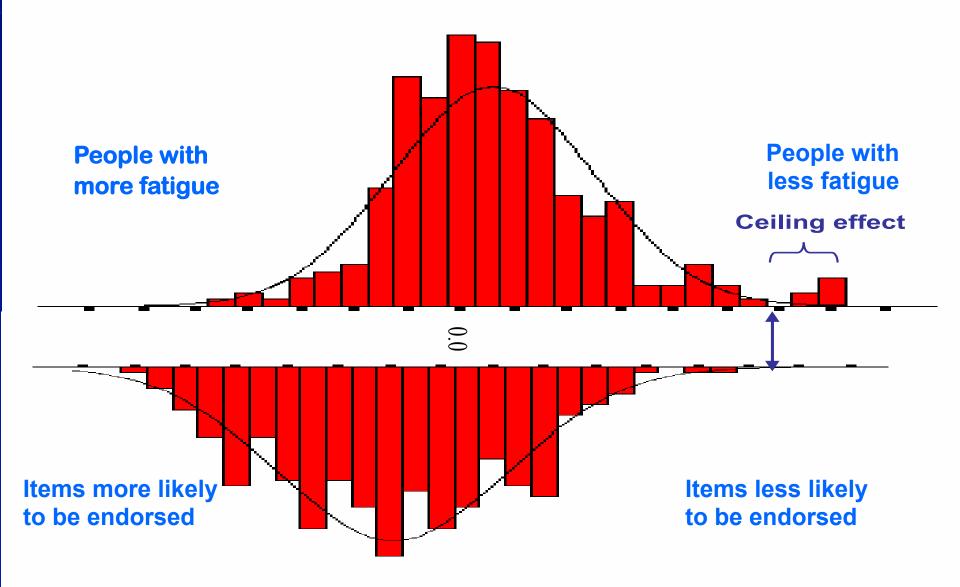
These items are reviewed by experts, patients, and methodologists to make sure:

Item phrasing is clear and understandable for those with low literacy

• Item content is related to pain assessment and appropriate for target population


Item adds precision for measuring different levels of pain

## **ITEM RESPONSE THEORY MODELS**


- IRT models enable reliable and precise measurement of PROs
  - Fewer items needed for equal precision
  - Makes assessment briefer
- More precision gained by adding items
  - Reducing error and sample size requirements
- Error is understood at the individual level
  - Allowing practical individual assessment

### **RANGE OF MEASUREMENT**

#### Are you able to ... Does your health now limit you in ...



### PEOPLE AND ITEMS DISTRIBUTED ON THE SAME METRIC: FATIGUE



### THE ADVANTAGES OF CAT-BASED ASSESSMENT

- Provide an accurate estimate of a person's score with the minimal number of questions
  - Questions are selected to match the health status of the respondent
- CAT minimizes floor and ceiling effects
  - People near the lower or upper extremes of a scale will receive items that are designed to assess their health status

### SUMMARY

- Good availability of HRQL instruments for assessing outcomes in CKD patients with anemia
  - Evaluating treatment effects
  - Monitoring health status
- Good content coverage and psychometrically sound
  - Reliability
  - Validity
  - Responsiveness
- Future research needs to focus more on interpretation and clinical significance
- PROMIS may provide relevant and psychometrically sound measures of pain, fatigue, physical functioning and other domains

## CONCLUSION

- Relevancy of HRQL data for regulatory and clinical decision making depends on the strength of the research evidence on added value
- Safety and clinical efficacy data are insufficient for the comprehensive understanding of medical treatments
- HRQL is the ultimate outcome of health care interventions and is the key to assessing effectiveness beyond safety and efficacy
- Patients, clinicians and regulatory agencies need HRQL data to make decisions about the benefit and risk of new therapies

### THE GOAL OF MEDICINE (C 1400)

"To cure sometimes, to relieve often, to comfort always"