

Interplay between iron and inflammatory processes

Peter Bárány Department of Renal Medicine Karolinska Universitety Hospital and CLINTEC Karolinska Institutet Stockholm, Sweden

Disclosure of Interests

Nothing to declare except participation in several clinical trials of anti-anemic drugs.

- Inflammation, ESA resistance and functional iron deficiency
- Iron markers
 - Predictors of response to iron?
 - Correlation to inflammation
- Hepcidin and inflammation in CKD
- Associations with mortality in CKD patients
- Treatment with iron

CRP Variation in Hemodialysis Patients Over Three Months the MIMICK study

Snaedal et al. Am J Kidney Dis 2009 Jun;53(6):1024-33

CRP are higher in HD patients with comorbidity

Anemia in epoetin-treated dialysis patients

Functional Iron Deficiency Was Described Early in Epoetin-treated CKD5D Patients

- Combined Phase I and II trial data for recombinant human erythropoietin (rHuEPO) in 25 HD patients with anemia
- rHuEPO administration induced a fall in TSAT and serum iron levels

Estimated annual loss of iron in hemodialysis patients

Average annual iron losses due to:

Kalantar-Zadeh et al. Advances in Chronic Kidney Disease, Volume 16, Issue 2, 2009, 143 - 151

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

	1 1	, , . ,
	Causes for inadequate	Total number 🤆
D study	EPO response	patients
EPO	Infection/inflammation	41
3,6 % of the	Blood loss	16
	Hyperparathyroidism/aluminum toxicity	10
oglobin less	Hemoglobinopathy	2
g/dL,	Folate/vitamin B ₁₂ deficiency	1
	Multiple myeloma/myelofibrosis/	6
m ferritin	myelodysplastic syndrome	
han or equal	Malnutrition	5
g/L, and 💦 🦯	Hemolysis	0
dose greater	Inadequate dialysis	2
	Pure red cell aplasia	1
equal to	Malignancy	7
U/week. 📃	Graft/shunt problems	14
	Operation	8
	Suspected noncompliance	9
	Medication (\geq bone marrow suppress)	4
	Unknown	2

Table 2. Possible causes^a for inadequate erythropoietin (EPO) response of selected patients^b (N = 57)/1677, 3,6 %

^aAdjusted according to the categorization of the National Kidney Foundatio Dialysis Outcome and Quality Investigation (2002).

^bSome patients fall in more than one category (i.e., there is more than or possible cause for their inadequate EPO response).

NECOSAD

- inadequate E response in 3 pts:
 - (1) hemo than 9.7g
 - (2) serun greater th to 200 g
 - (*3*) EPO (than or e 14,000 IL

Kidney Int. 2005 Sep;68(3):1215-22. Kharagjitsingh AV, et al; NECOSAD Study Group.

My topics

- Inflammation, ESA resistance and functional iron deficiency
- Iron markers
 - Predictors of response to iron?
 - Correlation to inflammation
- Hepcidin and inflammation in CKD
- Associations with mortality in CKD patients
- Treatment with iron

Poor prediction of ESA response by iron markers

Tessitore et al. Nephrol Dial Transplant. 2001 Jul;16(7):1416-23.

Controversies Conference on Iron Management in CKD | Manch 27-50, 2014 | San Francisco, California, USA

Ferritin iron content (%) in CKD 2-5 patients (green) and dialysis patients (blue).

Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease

- ...all currently available laboratory biomarkers of iron status (either newer or classical markers) do not have an ideal predictive ability when used singly to determine iron deficiency as defined by a response to iron challenge test.
- ... there is insufficient evidence to determine the test performance of the combinations of newer biomarkers, or combinations of newer and classical biomarkers, for diagnosing iron deficiency.
- ...it may be that CHr and %HYPO have better predictive ability for a response to IV iron treatment than classical markers (TSAT <20 or ferritin <100 ng/mL) in HD CKD patients.

Chung M, et al. Comparative Effectiveness Review No. 83. Prepared by the Tufts Evidence-based Practice Center

Hemoglobin Groups and Hypochromic Red Cells the MIMICK study (unpublished)

Relationship hypochromic RBC – ESA resistance in HD patients

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

Relationship hypochromic RBC – CRP in HD patients

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

Association between two inflammatory markers (CRP, IL-6) and epoetin resistance in 754 hemodialysis patients.

Rattanasompattikul M et al. Nephrol. Dial. Transplant. 2013;28:1936-1945

My topics

- Inflammation, ESA resistance and functional iron deficiency
- Iron markers

 Predictors of response to iron?
 Correlation to inflammation
- Hepcidin and inflammation in CKD
- Associations with mortality in CKD patients
- Treatment with iron

Systemic Inflammation – Effects on Erythropoiesis

- Decreased endogenous erythropoietin production
- Suppression of erythropoiesis
 - decreased erythropoietin sensitivity
- Shortened erythrocyte survival
- Impaired iron utilization

Hypoxia and inflammation interplay: coordinates EPO synthesis with iron metabolism.

Modified from Haase V H Am J Physiol Renal Physiol 2010;299:F1-F13

Regulation of hepcidin synthesis.

HUDNEY DIGG

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

Hepcidin levels in CKD patients

HUDNEY DISE TO

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

Ashby et al. Kidney International. 2009;75(9):976–981.

Serum hepcidin-25 levels in healthy controls and chronic kidney disease (CKD) patients

Tsuchiya and Nitta. Therapeutic Apheresis and Dialysis Volume 17, Issue 1, pages 1-8,

Ashby et al. Kidney International. 2009;75(9):976–981.

Anemia and inflammatory variables according to hepcidin tertile groups

	Tertile 1	Tertile 2	Tertile 3	р
Hep, ng/ml	38 (22-61)	110 (96-12 <mark>9</mark>)	2 <mark>2</mark> 1 (170-267)	
Hb, g/dL	11.9 (10.9-12.7)	11.8 (<mark>11.0-12.7)</mark>	12.0 (11.3-12.7)	0.7
Ferritin, g/L	216 (120-380)	4 <mark>22 (29</mark> 6-610)	630 (427-834)	<0.001
Hypochromic RBC, %	1.6 (0.75-4.1)	1.1 (0.5-2.7)	1.3 (0.8-4.0)	0.12
CRP, mg/L	6.4 (2-18)	6.3 (2.6-19)	7.4 (3.0-24.3)	0.5
IL-6, pg/ml	8.7 (4.7-14.5)	8.8 (5.5-25.7)	8.2 (5.5-47.7)	0.8
ESA, IU/kg per week	168(106-240)	119, (71-265)	121 (78-209)	<0.05

MIMICK study, ASN poster 2011

Relationship p-hepcidin – IL-6 in hemodialysis patients

Controversies Conference on Iron Management Hepcidin_{Mang}/ml_{30, 2014} San Francisco, California, USA

Relationship p-hepcidin – p-ferritin in hemodialysis patients

van der Weerd NC, Grooteman MPC, Bots ML, van den Dorpel MA, et al. (2012) Hepcidin-25 in Chronic Hemodialysis Patients Is Related to Residual Kidney Function and Not to Treatment with Erythropoiesis Stimulating Agents. PLoS ONE 7(7): e39783.

Molecular regulation of hepcidin by iron and inflammation.

My topics

- Inflammation, ESA resistance and functional iron deficiency
- Iron markers
 - Predictors of response to iron?
 - Correlation to initian mation
- Hepcidin and Inflammation in CKD
- Associations with mortality in CKD patients
- Treatment with iron

All-cause mortality associated with transferrin saturation (TSAT) ratio in patients with moderate and advanced non–dialysis-dependent chronic kidney

Kovesdy. Advances in Chronic Kidney Disease, Volume 16, Issue 2, 2009, 109 - 116

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

Association between serum ferritin and all-cause (top) and cardiovascular (CV; bottom) mortality.

Ferritin (ng/ml) Controversies Conterence on Iron Management In CKD | March 27-30, 2014 | San Francisco, California, USA Kalantar-Zadeh K et al. JASN 2005;16:3070-3080

Association between administered intravenous iron and all-cause (top) and CV (bottom) mortality.

©2005 by American Society of Nephrology

```
March 27-30, 2014 | San Francisco, California, USA
Kalantar-Zadeh K et al. JASN 2005;16:3070-3080
```

Table 3. Results of weighted multivariable model for the probability of mortality as a function of iron administered during the prior 6 mo

Xeviele	Category	Adjustedª	
Variable		Hazard Ratio (95% CI)	P value
Iron (mg) ^b	None > 0 to 700 > 700 to 1000 > 1000 to 1800 > 1800	Ref. 1.04 (0.91–1.19) 1.00 (0.87–1.14) 0.96 (0.84–1.09) 1.04 (0.90–1.21)	0.78

Feldman et al. J Am Soc Nephrol 15: 1623–1632, 2004

Epoetin Responsiveness Predicts Survival in the Normal Hematocrit Study. Association between epoetin response quartile, and all-cause 1-yr mortality assessed using a Cox proportional hazard model.

Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA

My topics

- Inflammation, ESA resistance and functional iron deficiency
- Iron markers
 - Predictors of response to iron?
 - Correlation to initar mation
- Hepcidin and Inflammation in CKD
- Associations with mortality in CKD patients
- Treatment with iron

Oral iron is often not effective in CKD

Poor absorbtion

- Inflammation high hepcidin
- Interaction with other drugs
- Intolerance
 - GI-symptoms

Controversies Conference on Iron Management in CKD | March 27-60, 2014 | San Francisco, California, USA

Treatment schedules IV iron

- Intermittent (triggered by threshold levels of ferritin and /or TSAT)
 - 1. Low dose 10 doses of 100 mg during 3-4 weeks
 - 2. High dose 500-1000 mg total dose infusion
- Continuous (depending on response)
 - 1. Low dose 10-200 mg*1-3 per 7-28 days
 - 2. High dose 1000 mg every third month

Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: Systematic Review and Meta-analysis

Hemoglobin (Hb) level or change from baseline for trials comparing intravenous (IV) iron versus oral iron in patients with chronic kidney disease (CKD) not on dialysis therapy.

The IV iron arm included 421 patients and the oral iron arm included 281 patients.

Rozen-Zvi et al, American Journal of Kidney Diseases Volume 52, Issue 5 2008 897 - 906

Hemoglobin (Hb) level or change from baseline for trials comparing intravenous (IV) iron versus oral iron in dialysis patients.

The IV iron arm included 215 patients and the oral iron arm included 205 patients. Serum Hb may be converted from g/dL to g/L by multiplying by 10.

Rozen-Zvi et al, American Journal of Kidney Diseases Volume 52, Issue 5 2008 897 - 906

Erythropoiesis-stimulating agent (ESA) dose or change from baseline at end of study for trials comparing intravenous (IV) iron versus oral iron in dialysis patients.

The IV iron arm included 152 patients and the oral iron arm included 156 patients. Abbreviation: CI, confidence interval.

Rozen-Zvi et al, American Journal of Kidney Diseases Volume 52, Issue 5 2008 897 - 906

Kapoian T et al. JASN 2008;19:372-379

Serum ferritin at baseline, end of DRIVE (wk 6), and end of DRIVE-II (wk 12).

Observation Point

Kapoian T et al. JASN 2008;19:372-379

Pentoxifylline Improves Hemoglobin Levels in Patients with Erythropoietin-resistant Anemia in Renal Failure

ANGELA COOPER,*[†] ASHRAF MIKHAIL,* MARK W. LETHBRIDGE,[†] D. MICHAEL KEMENY,[†] and IAIN C. MACDOUGALL*

Departments of *Renal Medicine and [†]Immunology, GKT School of Medicine, King's College Hospital, London, United Kingdom.

Cochrane review: Interventions for erythropoietinresistant anaemia in dialysis patients

Badve et al. Cochrane Database Syst Rev. 2013 Aug Controversies Conference on Iron Management in CKD | March 27-30, 2014 | San Francisco, California, USA Review: Interventions for erythropoietin-resistant anaemia in dialysis patients Comparison: 3 ESA and IV iron doses Outcome: 1 EPO dose

Study or subgroup	Vitamin C N	Control Mean(SD)[IU/kg/wk]N	Mean(SD)[IU/kg/wk]	Mean Difference IV,Random,95% Cl	Mean Difference IV,Random,95% CI
Attallah 2006	20) 429 (24.7) 2:	447 (32.5)		-18.00[-35.62,-0.38]
			-5(Favours Vitamin C	0 -25 0 25 50 Favours control	
Review: Interventions for Comparison: 2 Haematol Outcome: 1 Haemoglobin	ogy and bioc	tin-resistant anaemia in di hemistry results	alysis patients		
Study or subgroup	Treatment N	Control Mean(SD)[g/dL] N	Mean(SD)[g/dL]	Mean Difference IV, Random, 95% Cl	Mean Difference IV,Random,95% CI
1 Vitamin C versus contro Attallah 2006	20	10.5 (0.9) 21	9.6 (0.8)		0.90 [0.38, 1.42]
2 High-flux versus low-f Ayli 2004	lux dialyser 24	11.4 (0.5) 24	9.5 (0.4)	+	1.90 [1.64, 2.16]
			-4 Favours control	-2 0 2 4 Favours treatment	
Review: Interventions for Comparison: 3 ESA and I Outcome: 2 IV Iron	r erythropoiet V iron doses	tin-resistant anaemia in di	alysis patients		
Study or subgroup	Vitamin C N	Control Mean(SD)[mg/wk] N	Mean(SD)[mg/wk]	Mean Difference IV,Random,95% Cl	Mean Difference IV,Random,95% Cl
Attallah 2006	20	26.6 (25.4) 21	26.8 (26.7)		-0.20 [-16.15, 15.75]
			-20 Favours vitamin C	-10 0 10 20 Favours control	

Summary

- Inflammation is highly prevalent with large inter- and intraindividual variation in CKD patients.
- Inflammation has several effects on erythropoiesis and is one important regulator of hepcidin
- Inflammation, functional iron deficiency and ESA hyporesponsiveness are linked to comorbidity and mortality
- None of the currently available laboratory biomarkers of iron status is a reliable predictor for iron response in CKD patients
- CKD patients have high hepcidin levels which contribute to anemia, functional iron deficiency as well as ESA and oral iron hyporesponsiveness.
- The optimal treatment of anemia in CKD patients with inflammatory-induced functional iron deficiency and hyporesponse is not established. Long-term safety of different treatment schedules have not been adequately evaluated in clinical trials.

thank you!

