Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate

Morgan E. Grams1,2, Yingying Sang2, Shoshana H. Ballew2, Juan Jesus Carrero3, Ognjenka Djurdjev4, Hiddo J.L. Heerspink5, Kevin Ho6, Sadayoshi Ito7, Angharad Marks8, David Naimark9, Danielle M. Nash10, Sankar D. Navaneethan11, Mark Sarnak12, Benedicte Stengel13, Frank L.J. Visseren14, Angela Yee-Moon Wang15, Anna Köttgen2,16, Andrew S. Levey12, Mark Woodward2,17,18, Kai-Uwe Eckardt19, Brenda Hemmelgarn20 and Josef Coresh2

1Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; 3Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; 4Department of Measurement and Reporting, Provincial Health Service Authority, Vancouver, British Columbia, Canada; 5Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands; 6Department of Nephrology, Geisinger Medical Center, Danville, Pennsylvania, USA; 7Division of Nephrology, Endocrinology and Hypertension, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; 8Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, UK; 9Sunnybrook Hospital, University of Toronto, Toronto, Ontario, Canada; 10Institute for Clinical Evaluative Sciences, Ontario, Canada; 11Section of Nephrology, Baylor College of Medicine, Houston, Texas, USA; 12Division of Nephrology at Tufts Medical Center, Boston, Massachusetts, USA; 13INSERM UMR1018, CESP Center for Research in Epidemiology and Population Health, Team S, Villejuif, France, UVSQ and UMR 1018, Paris-Sud University, Villejuif, France; 14Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; 15Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong; 16Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany; 17The George Institute for Global Health, University of Oxford, Oxford, UK; 18The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia; 19Department of Nephrology and Medical Intensive Care, Charité, Universitätmedizin Berlin, Berlin, Germany; and 20Cumming School of Medicine, Division of Nephrology, and Department of Community Health Sciences, University of Calgary, Alberta, Canada

Patients with chronic kidney disease and severely decreased glomerular filtration rate (GFR) are at high risk for kidney failure, cardiovascular disease (CVD) and death. Accurate estimates of risk and timing of these clinical outcomes could guide patient counseling and therapy. Therefore, we developed models using data of 264,296 individuals in 30 countries participating in the international Chronic Kidney Disease Prognosis Consortium with estimated GFR (eGFR) under 30 ml/min/1.73m². Median participant eGFR and urine albumin-to-creatinine ratio were 24 ml/min/1.73m² and 168 mg/g, respectively. Using competing-risk regression, random-effect meta-analysis, and Markov processes with Monte Carlo simulations, we developed two- and four-year models of the probability and timing of kidney failure requiring kidney replacement therapy (KRT), a non-fatal CVD event, and death according to age, sex, race, eGFR, albumin-to-creatinine ratio, systolic blood pressure, smoking status, diabetes mellitus, and history of CVD. Hypothetically applied to a 60-year-old white male with a history of CVD, a systolic blood pressure of 140 mmHg, an eGFR of 25 ml/min/1.73m² and a urine albumin-to-creatinine ratio of 1000 mg/g, the four-year model predicted a 17% chance of survival after KRT, a 17% chance of survival after a CVD event, a 4% chance of survival after both, and a 28% chance of death (9% as a first event, and 19% after another CVD event or KRT). Risk predictions for KRT showed good overall agreement with the published kidney failure risk equation, and both models were well calibrated with observed risk. Thus, commonly-measured clinical characteristics can predict the timing and occurrence of clinical outcomes in patients with severely decreased GFR.

Correspondence: Josef Coresh (Principal Investigator), Chronic Kidney Disease Prognosis Consortium Data Coordinating Center, 204 East Monument Street, Baltimore, Maryland 21205, USA. E-mail: ckdpc@jhmi.edu

Received 19 July 2017; revised 12 December 2017; accepted 11 January 2018; published online 29 March 2018

Chronic kidney disease (CKD) is an increasingly common problem globally.1 In the developing world, disease burden is shifting from communicable to noncommunicable causes, and the prevalence of CKD has grown with the rise of hypertension, obesity, and diabetes.2 In the developed world, the prevalence of CKD has increased with improvements in life expectancy.3 The implications of
CKD include morbidity, mortality, and reduction in quality of life at the individual level and high costs at the societal level.\(^4\) Patients with severely decreased glomerular filtration rate (GFR) in particular are at high risk for adverse outcomes, including kidney failure, cardiovascular disease (CVD) events, and death.\(^2,10\) Accurate prediction of whether and when clinical outcomes will occur in patients with severely decreased estimated GFR (eGFR <30 ml/min per 1.73 m\(^2\)) is a high-priority research area.\(^4,6\) Tangri et al.\(^2\) found that patients with stage G4 CKD (eGFR <60 ml/min per 1.73 m\(^2\)) in two Canadian cohorts, and this kidney failure risk equation (KFRE) was subsequently validated in 31 global cohorts.\(^8\) Other prediction tools exist, but they have not undergone robust validation.\(^9–11\)

There are a few existing tools to predict the onset of kidney failure treated with kidney replacement therapy (KRT; also frequently referred to as end-stage kidney disease), one of the most costly outcomes of CKD.\(^4\) Tangri et al.\(^2\) developed an absolute risk prediction tool for patients with stages G3 to G5 CKD (eGFR <60 ml/min per 1.73 m\(^2\)) in two Canadian cohorts, and this kidney failure risk equation (KFRE) was subsequently validated in 31 global cohorts.\(^8\) Other prediction tools exist, but they have not undergone robust validation.\(^9–11\)

None of the tools was developed specifically for a population with stage G4+ CKD, nor do they predict other potentially more common events, such as pre-KRT death and nonfatal CVD events.

Using 29 cohorts of patients with stage G4+ CKD participating in the international CKD Prognosis Consortium, we simultaneously assessed the risks of KRT, nonfatal CVD events, and death, applying competing risk, meta-analysis with random effects models, and Markov process methodology. The goal was to develop a 2- and 4-year calculator to predict both the probability and the order of clinical events according to nine demographic and clinical characteristics.

RESULTS

Baseline characteristics

In total, there were 264,296 participants with eGFR <30 ml/min per 1.73 m\(^2\) from 29 cohorts in 30 countries for use in model development (Table 1; Supplementary Table S1). Twenty cohorts had data for nonfatal CVD events, KRT, and death; and 9 had data for KRT and death only. Average age ranged from 47 years old (Nanjing CKD, China) to 82 years old (Parcours de Soins des Personnes Agées [PSPA], France). The distribution of eGFR and albuminuria varied by cohort but was often skewed toward the higher end of eGFR <30 ml/min per 1.73 m\(^2\) and the lower end of urine albumin-to-creatinine ratio (ACR) (Supplementary Figures S1 to S2). Cause of CKD included diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and interstitial nephritis but was unknown in most of the cohorts (Supplementary Table S2).

Rates, risk factors, and adjusted absolute risk of adverse outcomes

Overall, there were 123,985 deaths, 31,541 events of kidney failure treated with KRT, and 70,394 CVD events identified over a mean follow-up of 3.5 years. Events were categorized not only by their occurrence but also by their timing relative to KRT and CVD events and modeled as a function of age, sex, race, history of CVD, current smoking status, systolic blood pressure, diabetes mellitus, eGFR, and urine ACR (Figure 1). Strong risk factors for developing KRT as a first event included younger age, black race, higher systolic blood pressure, lower eGFR, and higher urine ACR (Supplementary Table S3). In contrast, strong risk factors for developing a CVD event prior to KRT included older age, previous history of CVD, and diabetes. Older age and smoking were the strongest risk factors for death prior to KRT or CVD. There was some quantitative heterogeneity across cohorts, but risk associations were qualitatively consistent (Supplementary Figures S3 and S4). The adjusted cumulative incidence of each event over time varied across cohorts, particularly by cohort type (Figure 2). The adjusted absolute risk of KRT as a first event was generally highest among the CKD research cohorts, whereas the risk of a CVD event or death prior to KRT was highest among the administrative cohorts. Second and third events were quantified in a similar manner (Supplementary Table S4 and S6 and Supplementary Figures S5 and S7).

Risk prediction model: 2- and 4-year outcomes

Risk factors and adjusted absolute risk were combined using a Markov process and simulations to create a prediction model for the probability and timing of clinical events and were approximated using a multinomial model (median \(R^2 = 0.99\); Supplementary Table S7; http://ckdpcrisk.org/lowgfrevents/). In hypothetical scenarios, the probability of adverse events increased with longer follow-up and higher albuminuria. For example, a 60-year-old white man with a history of CVD, systolic blood pressure of 140 mm Hg, eGFR of 25 ml/min per 1.73 m\(^2\), and urine ACR of 30 mg/g but no current smoking or diabetes mellitus was predicted to have a 74% chance of remaining event-free at 2 years, along with a 9% chance of death and a 5% chance of KRT (Figure 3a). In contrast, a similar scenario but for urine ACR of 1,000 mg/g and assessment at 4 years resulted in a prediction of event-free survival of 34%, with a 28% chance of death, a 17% chance of survival with KRT, a 17% chance of survival with CVD, and a 4% chance of both (Figure 3b). Other scenarios that dramatically affected the probability of adverse events included lower eGFR (higher risk of KRT), the presence of diabetes mellitus (higher risk of CVD events) and older age (higher risk of death) (Supplementary Figures S8 to S13).

Comparison with the KFRE and observed risk of kidney failure treated with KRT

We compared absolute risk projections from the developed risk prediction model with the previously developed 2-year and 4-variable KFRE for a set of scenarios holding constant the overlapping risk characteristics (age, sex, eGFR, and albuminuria) but varying others that were included only in our model (race, systolic blood pressure, diabetes mellitus, smoking status, and history of CVD), demonstrating good
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Death</th>
<th>Kidney failure</th>
<th>CVD event</th>
<th>Mean follow-up, yr</th>
<th>Age, yr</th>
<th>Systolic blood pressure, mm Hg</th>
<th>eGFR, ml/min per 1.73 m²</th>
<th>Urine ACR, mg/g</th>
<th>Male sex</th>
<th>Black race</th>
<th>History of CVD</th>
<th>Diabetes mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASK (USA)</td>
<td>622</td>
<td>135</td>
<td>286</td>
<td>38</td>
<td>4 (3)</td>
<td>56 (12)</td>
<td>135 (21)</td>
<td>25 (4)</td>
<td>130 (34, 488)</td>
<td>60%</td>
<td>100%</td>
<td>53%</td>
<td>1%</td>
</tr>
<tr>
<td>BC CKD (Canada)</td>
<td>9672</td>
<td>4717</td>
<td>3036</td>
<td>NA</td>
<td>5 (3)</td>
<td>71 (13)</td>
<td>137 (23)</td>
<td>24 (5)</td>
<td>225 (42, 1233)</td>
<td>55%</td>
<td>0.41%</td>
<td>16%</td>
<td>50%</td>
</tr>
<tr>
<td>CanPREDICT (Canada)</td>
<td>1739</td>
<td>452</td>
<td>435</td>
<td>334</td>
<td>2 (2)</td>
<td>69 (13)</td>
<td>134 (20)</td>
<td>23 (5)</td>
<td>188 (37, 929)</td>
<td>62%</td>
<td>1.6%</td>
<td>38%</td>
<td>52%</td>
</tr>
<tr>
<td>CCF (USA)</td>
<td>9256</td>
<td>3000</td>
<td>1115</td>
<td>NA</td>
<td>2 (1)</td>
<td>73 (13)</td>
<td>130 (22)</td>
<td>24 (5)</td>
<td>51 (13, 346)</td>
<td>46%</td>
<td>17%</td>
<td>24%</td>
<td>30%</td>
</tr>
<tr>
<td>CRIB (UK)</td>
<td>315</td>
<td>133</td>
<td>185</td>
<td>NA</td>
<td>6 (3)</td>
<td>62 (14)</td>
<td>152 (23)</td>
<td>18 (7)</td>
<td>589 (118, 1345)</td>
<td>61%</td>
<td>5.1%</td>
<td>45%</td>
<td>17%</td>
</tr>
<tr>
<td>CRIC (USA)</td>
<td>1764</td>
<td>473</td>
<td>834</td>
<td>475</td>
<td>5 (3)</td>
<td>60 (11)</td>
<td>131 (24)</td>
<td>25 (4)</td>
<td>267 (48, 1066)</td>
<td>54%</td>
<td>45%</td>
<td>45%</td>
<td>60%</td>
</tr>
<tr>
<td>CRISIS (UK)</td>
<td>1717</td>
<td>710</td>
<td>461</td>
<td>NA</td>
<td>3 (3)</td>
<td>66 (14)</td>
<td>140 (22)</td>
<td>20 (6)</td>
<td>150 (55, 466)</td>
<td>62%</td>
<td>0.64%</td>
<td>48%</td>
<td>36%</td>
</tr>
<tr>
<td>GCKD (Germany)</td>
<td>504</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td>2 (0)</td>
<td>64 (11)</td>
<td>140 (22)</td>
<td>26 (4)</td>
<td>130 (23, 877)</td>
<td>61%</td>
<td>0%</td>
<td>43%</td>
<td>44%</td>
</tr>
<tr>
<td>Geisinger (USA)</td>
<td>19,293</td>
<td>10,039</td>
<td>1802</td>
<td>6292</td>
<td>4 (4)</td>
<td>73 (14)</td>
<td>137 (23)</td>
<td>24 (5)</td>
<td>225 (42, 1233)</td>
<td>55%</td>
<td>0.41%</td>
<td>16%</td>
<td>50%</td>
</tr>
<tr>
<td>CanPREDDICT (Canada)</td>
<td>6384</td>
<td>3283</td>
<td>265</td>
<td>NA</td>
<td>3 (2)</td>
<td>79 (11)</td>
<td>NA</td>
<td>25 (5)</td>
<td>44 (10, 189)</td>
<td>38%</td>
<td>5.1%</td>
<td>45%</td>
<td>17%</td>
</tr>
<tr>
<td>Geisinger (USA)</td>
<td>502</td>
<td>191</td>
<td>270</td>
<td>NA</td>
<td>6 (3)</td>
<td>61 (12)</td>
<td>140 (22)</td>
<td>20 (6)</td>
<td>130 (55, 466)</td>
<td>62%</td>
<td>0.64%</td>
<td>48%</td>
<td>36%</td>
</tr>
<tr>
<td>Maccabi (Israel)</td>
<td>12,576</td>
<td>7531</td>
<td>1693</td>
<td>3480</td>
<td>4 (3)</td>
<td>76 (14)</td>
<td>137 (23)</td>
<td>24 (5)</td>
<td>225 (42, 1233)</td>
<td>55%</td>
<td>0.41%</td>
<td>16%</td>
<td>50%</td>
</tr>
<tr>
<td>MASTERPLAN (Netherlands)</td>
<td>437</td>
<td>93</td>
<td>142</td>
<td>32</td>
<td>4 (1)</td>
<td>61 (12)</td>
<td>138 (22)</td>
<td>24 (5)</td>
<td>185 (53, 666)</td>
<td>69%</td>
<td>0%</td>
<td>32%</td>
<td>32%</td>
</tr>
<tr>
<td>MDRD (USA)</td>
<td>851</td>
<td>474</td>
<td>724</td>
<td>NA</td>
<td>14 (7)</td>
<td>51 (13)</td>
<td>134 (19)</td>
<td>22 (6)</td>
<td>335 (64, 1002)</td>
<td>60%</td>
<td>10%</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Nanjing CKD (China)</td>
<td>1584</td>
<td>116</td>
<td>1003</td>
<td>108</td>
<td>4 (3)</td>
<td>47 (14)</td>
<td>141 (22)</td>
<td>21 (6)</td>
<td>1008 (550, 1839)</td>
<td>54%</td>
<td>0%</td>
<td>12%</td>
<td>21%</td>
</tr>
<tr>
<td>NephroTest (France)</td>
<td>740</td>
<td>213</td>
<td>372</td>
<td>NA</td>
<td>6 (4)</td>
<td>61 (12)</td>
<td>139 (22)</td>
<td>22 (6)</td>
<td>277 (69, 820)</td>
<td>67%</td>
<td>11%</td>
<td>24%</td>
<td>36%</td>
</tr>
<tr>
<td>NRHP-URU (Uruguay)</td>
<td>2090</td>
<td>658</td>
<td>512</td>
<td>385</td>
<td>3 (2)</td>
<td>72 (13)</td>
<td>135 (22)</td>
<td>21 (5)</td>
<td>83 (0, 655)</td>
<td>49%</td>
<td>0.14%</td>
<td>36%</td>
<td>32%</td>
</tr>
<tr>
<td>NZDCS (New Zealand)</td>
<td>1372</td>
<td>919</td>
<td>1413</td>
<td>620</td>
<td>6 (3)</td>
<td>71 (12)</td>
<td>138 (21)</td>
<td>23 (6)</td>
<td>13 (2, 93)</td>
<td>43%</td>
<td>0.073%</td>
<td>47%</td>
<td>100%</td>
</tr>
<tr>
<td>PSP (UK)</td>
<td>3522</td>
<td>1251</td>
<td>141</td>
<td>688</td>
<td>2 (1)</td>
<td>80 (12)</td>
<td>131 (19)</td>
<td>24 (5)</td>
<td>48 (18, 151)</td>
<td>43%</td>
<td>0.51%</td>
<td>47%</td>
<td>30%</td>
</tr>
<tr>
<td>PSP (France)</td>
<td>573</td>
<td>437</td>
<td>294</td>
<td>NA</td>
<td>3 (2)</td>
<td>82 (5)</td>
<td>145 (22)</td>
<td>13 (4)</td>
<td>463 (174, 1015)</td>
<td>57%</td>
<td>0%</td>
<td>55%</td>
<td>39%</td>
</tr>
<tr>
<td>RACV (USA)</td>
<td>78,114</td>
<td>30,012</td>
<td>4148</td>
<td>21,672</td>
<td>3 (2)</td>
<td>69 (12)</td>
<td>125 (24)</td>
<td>24 (5)</td>
<td>38 (10, 220)</td>
<td>97%</td>
<td>21.6%</td>
<td>61%</td>
<td>58%</td>
</tr>
<tr>
<td>REANAAL (Multi)</td>
<td>1078</td>
<td>234</td>
<td>327</td>
<td>400</td>
<td>3 (1)</td>
<td>60 (7)</td>
<td>151 (21)</td>
<td>26 (3)</td>
<td>1604 (690, 3133)</td>
<td>59%</td>
<td>12.5%</td>
<td>28%</td>
<td>100%</td>
</tr>
</tbody>
</table>
| SCR (

agreement (within-cohort R^2 ranging from 0.89 to 0.97; median within-study C statistic of 0.814 (range, 0.680 to 0.972) and 0.817 (range, 0.666 to 0.929), respectively (Supplementary Figures S14 to S19). Calibration to observed risk using clinically relevant categories was also good for both the developed risk prediction model as well as the KFRE (Supplementary Figure S20). Within cohorts, the prevalence of 2-year predicted KRT risk of >40% (potentially an actionable threshold) was approximately 10% in most cohorts, by using the KFRE and slightly higher by using our Markov model; but many participants had >50% predicted probability of remaining event-free at 4 years (Supplementary Figures S21 and S22).

Alternative risk prediction model: assessment of variation by cohort type

Alternate versions of the risk model that incorporated adjusted absolute risk estimates from the 3 types of cohort (CKD research, administrative, and referred CKD) showed an approximately 2-fold variation in the predicted risk of clinical events between models (Supplementary Figure S23; Figure 4). The predicted probability of KRT was higher and probability of death was lower in the CKD research cohort-based prediction model than in the overall prediction model; the opposite was true in the administrative cohort-based prediction model (Supplementary Figures S24 to S26). Variation in adjusted absolute risk over time was less consistent by region or cause of disease (Supplementary Figures S27 and S28).

Alternative risk prediction model: three-state Markov model

In sensitivity analysis, we compared the predicted probability of KRT and death from the 5-state Markov model derived from data in the 20 cohorts with all 3 outcomes to the predicted probability of KRT and death from a 3-state Markov model (CKD G4+, KRT, and death) derived from data from all 29 cohorts with available KRT and death (Supplementary Figure S29). Risk projections were similar (Supplementary Figure S30).

DISCUSSION

In this global consortium of 264,296 patients with eGFR of <30 ml/min per 1.73 m², we developed and tested a model to predict the absolute risk and relative order of KRT, nonfatal CVD events, and death in 2- and 4-year periods. The risk calculator has been made publicly available (http://ckdpcrisk.org/lowgfrevents/) and may aid in patient counseling, including referral recommendations for transplantation or vascular access surgery. With the caveat that many of our cohorts represent incident stage G4+ CKD patients, we found that occurrence of events (KRT, nonfatal CVD events, or death) was not uniformly high, with nearly 50% of the participants expected to be event-free at the end of 4 years.

Our study provides evidence that clinical characteristics at eGFR of <30 ml/min per 1.73 m² have strong relationships with subsequent events, even in individuals with severely decreased GFR. Both lower eGFR and higher albuminuria were strong risk factors for kidney failure treated with KRT. However, the absolute risks varied substantially according to age, with the predicted 4-year risk of KRT declining from 33% in a 35-year-old patient to 5% in an 85-year-old patient in a scenario with baseline eGFR of 25 ml/min per 1.73 m² and urine ACR of 100 mg/g. Not surprisingly, a history of CVD was an exceptionally strong risk factor for the occurrence of a CVD event among patients with stage G4+ CKD, supporting the potential importance of cardiovascular risk factor reduction in these patients despite their advanced kidney disease. Interestingly, in the included cohorts, many of the participants were predicted to remain event-free in the subsequent four years. This may be in part due to selection: there was a significant subset of participants with relatively low albuminuria, which may or may not be generalizable to the greater population.
A well-validated risk equation for kidney failure requiring KRT in stage G3+ CKD already exists.7,8 Our study adds to the published findings by simultaneously accounting for and estimating rates of competing events, particularly death. We confirm the accuracy of the KFRE in a population with lower GFR than the cohorts in which it was originally developed and validated, and we compared the KFRE to our own model, finding similar results. We suggest that health providers and systems use the KFRE in persons with GFR of <60 ml/min per 1.73 m2, in whom kidney failure treated with KRT is the primary event of interest and when a limited number of covariates are available. For patients with eGFR of <30 ml/min per 1.73 m2 in whom there is interest in incident CVD events or death or the sequence of such events in relation to KRT, we suggest our newly developed equation, which uses additional covariates to produce a more refined estimate.

Strengths of our study include a large number of patients with stage G4+ CKD from a broad range of countries. Models were developed and rigorously tested with many different sensitivity analyses. Prediction tools incorporated 9 different clinical and demographic variables and explained approximately 40-fold of the variation in explained risk, but there remained approximately 5-fold variation between cohorts.

Figure 2 | Adjusted* cumulative incidence of (a) kidney failure requiring kidney replacement therapy, (b) cardiovascular event, and (c) death as first event from Markov model. Color coding of the lines is described in (d). The black bold line indicates the equal weighted mean.*Adjusted to 60 years of age, half male, nonblack, half history of cardiovascular disease, half smoker, systolic blood pressure 140 mm Hg, half diabetes, estimated glomerular filtration rate 25 ml/min per 1.73 m2 and urine albumin-to-creatinine ratio 100 mg/g. Gray shaded cohorts (d) did not have cardiovascular events and were not included in panels a to c. CKD, chronic kidney disease. Study acronyms and abbreviations are listed in Appendix S2.
that was unexplained. Type of cohort did seem to be an important contributor in risk variation, with research cohorts having markedly higher KRT risk than others, even adjusted for baseline covariates. In those cohorts for which we had data, cause of CKD was not a major contributor to variation between cohorts. Although region has previously been found to play an important role in KRT risk, we did not see consistent differences between North America and non-North American regions, perhaps due to the relatively small number of cohorts from each region.8 We had limited data with which to evaluate whether differences in therapeutic interventions such as renin-angiotensin system inhibition or statin use might partially explain variation across cohorts.13

As with all models, there were certain assumptions. Relative risks were modeled as constant over time. The cumulative incidence of competing events was scaled to the cumulative incidence of the composite event derived from Cox regression. Initiation of KRT, which we and others used as an operational definition for the major adverse kidney disease endpoint, is a treatment decision which may be influenced by factors other than kidney function. For example, our observation of older age conferring lower risk for KRT may reflect preferences for conservative care rather than a slower progression of CKD or fewer symptoms. Fatal CVD events were simply counted as death, and not CVD.

In conclusion, our model predicts the occurrence and order of nonfatal CVD events, kidney failure treated with KRT, and death in patients with eGFR of <30 ml/min per 1.73 m². ESRD, end-stage renal disease; KRT, kidney replacement therapy.

Figure 3 | Probability and timing of clinical events at 2 and 4 years with increasing level of albuminuria. (a) Two years and urine albumin-to-creatinine ratio (ACR) of 30 mg/g; (b) 4 years and urine ACR of 1000 mg/g. In these models, the scenario was set at 60 years of age, male, white, history of CVD, not a current smoker, systolic blood pressure of 140 mm Hg, no diabetes, and an estimated glomerular filtration rate of 25 ml/min per 1.73 m². ESRD, end-stage renal disease; KRT, kidney replacement therapy.
to existing risk calculators when refined estimates that take into account competing events and patterns of events are required. Additional work is needed to further characterize sources of unexplained variation between cohorts, with the ultimate goal of identifying treatment strategies and practice patterns that can prevent or forestall adverse outcomes in patients with severely decreased GFR.

METHODS
Study population
Cohorts were identified from the CKD Prognosis Consortium (CKD-PC) as well as through an open call by the Kidney Disease: Improving Global Outcomes (KDIGO) entity. The CKD-PC has been described previously and in more detail in Appendices S1 and S2.14–17 Cohorts were considered eligible for the current study if they contained at least 500 patients with eGFR <30 ml/min per 1.73 m², data for albuminuria, and at least 50 events each of kidney failure requiring KRT and death. There were 29 cohorts included in analyses using a 3-state Markov model, and 20 cohorts using a 3-state Markov model. Thirteen cohorts were classified as CKD research cohorts (designed as a research study with planned study visits and active outcome ascertainment), 5 were classified as administrative cohorts (captured from a clinical or health system database covering an entire patient population), and 11 were classified as referred CKD cohorts (similar design as the administrative cohorts, but restricted to patients under the care of a nephrologist or in a CKD registry). This study was approved by the institutional review board at the Johns Hopkins Bloomberg School of Public Health (Baltimore, Maryland).

Covariates and outcomes
Serum creatinine was standardized to isotope dilution mass spectrometry and converted to eGFR, using the CKD-EPI 2009 creatinine equation.18 Measurements of albuminuria included the urine albumin-to-creatinine ratio, urine albumin excretion rate, and urine protein-to-creatinine ratio, with conversion to ACR as needed.7 In analyses, urine ACR was log-transformed and scaled to ln(10), so that coefficients were interpreted reflecting differences per 10-fold higher ACR. Diabetes was defined by individual cohorts as fasting glucose ≥7.0 mmol/l (126 mg/dl), nonfasting glucose ≥11.1 mmol/l (200 mg/dl), hemoglobin A1c ≥6.5%, use of glucose-lowering drugs, or self-reported diabetes. History of CVD was defined as a history of myocardial infarction, coronary revascularization, heart failure, or stroke. Smoking was categorized as current smoker versus former or never-smoker. Systolic blood pressure was reported by the cohorts and treated as a linear spline in regression models, with a knot at 140 mm Hg. Cause of disease was classified by individual cohorts. Outcomes included KRT, cardiovascular events, and death, and were defined using cohort-specific definitions (Appendix S1). Missing covariates (except for age, sex, race, and eGFR) were estimated using multiple imputation chained equations.19–21

Competing risk analyses
The associations between baseline covariates and first outcome were determined using competing risk regression, using the method of Fine and Gray, and treating first KRT, first nonfatal CVD event, and pre-KRT, precardinovascular death as competing events.15 This was repeated for all participants who reached KRT first, treating post-KRT CVD events and death as competing events, and for all participants who had a CVD event first, treating post-CVD event KRT and death as competing events. Only the first nonfatal CVD event after the onset of eGFR <30 ml/min per 1.73 m² was captured. At each step, a composite endpoint was also evaluated in the same manner using Cox regression. For the first event, the composite endpoint consisted of first KRT, first CVD event or death pre-KRT and pre-CVD event. For the second event after KRT, the composite endpoint consisted of post-KRT CVD events or post-KRT death. For the second event after a CVD event, the composite endpoint consisted of post-CVD event KRT or post-CVD event death. For the outcome of death after a participant had developed both KRT and a CVD event, Cox regression was used to estimate associations, as there was no competing event.

Meta-analysis and estimation of baseline subhazards
Fine and Gray subhazard ratios derived in each cohort were pooled using random effects meta-analysis. Heterogeneity was evaluated using forest plots and I² statistics.22–24 Cohort-specific adjusted baseline subhazards were estimated in each cohort by using competing risk regression, holding subhazard ratios constant and equal to the meta-analyzed subhazard ratios but allowing the baseline subhazard to vary between cohorts. The baseline subhazards were then used to calculate the adjusted cumulative incidence of each event over time. Baseline subhazards (i.e., the adjusted absolute risk over time) were displayed graphically to evaluate heterogeneity and summarized as the equally weighted mean over cohorts and, for cohort type-specific analysis, the equally weighted mean within cohort type. Note that, for the composite endpoints as well as event of death after KRT and a CVD event (where there is no competing event), Cox regression and baseline hazards were used, but the procedure was otherwise the same. A Weibull model was then fitted on the equal-weighted mean adjusted subhazard (or hazard) in order to allow a smooth, parametric estimate for use in the Markov process.

Markov process and simulations of absolute risks
The combination of parameters from the Weibull model and the meta-analyzed subhazard ratios were used to predict time-varying

Figure 4 | Markov model predicted 2-year survival without kidney failure treated with kidney replacement therapy or cardiovascular events for a range of scenarios (varying systolic blood pressure, race, diabetes, history of cardiovascular disease, and smoking status) for a 60-year-old man, comparing estimates using overall mean with cohort type-specific means for the baseline hazards and subhazards. ACR, urine albumin-to-creatinine ratio; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.
state transition probabilities (e.g., the probability of moving from stage G4+ to first KRT) for a given set of baseline covariates (age, sex, race, history of CVD, smoking status, diabetes mellitus, systolic blood pressure, eGFR, and urine ACR). In order to ensure that the probabilities for each state summed to 1, we scaled the cumulative probability of the events (for the first state transition, first KRT, first CVD event, and first death) to the cumulative probability of a composite endpoint ascertained using Cox proportional hazards model, as done previously.26 These state transition probabilities thus varied by time, age, and baseline covariates and were incorporated in a heterogeneous Markov process, using a cycle length of 1 month and time horizons of 2- and 4-years. Outcomes were estimated using 10,000 simulations for each scenario, where a scenario corresponded to a set of covariates. In other words, each iteration corresponded to 1 hypothetical person with the given set of covariates, and variation in the results of the iteration represented the stochastic natures in which persons traversed the Markov model. In order to assess the sensitivity of risk prediction to cohort type, we repeated the procedures using cohort-type-specific parameters for the baseline subhazards. We also repeated analyses in a 3-state model (CKD stage G4+, KRT, and death) (Supplementary Figure S29) to compare the results. To evaluate sources of unexplained variation, we examined the distribution of cumulative incidence of events by type of cohort, region, and prevalence of different causes of CKD.

Development of a web calculator
In order to implement the Markov process as a Web tool, we developed an estimating equation on simulated estimates for 3,702 baseline scenarios (every combination of age [35, 45, 55, 60, 65, 75, 80, and 85 years of age], sex, race [black and nonblack], diabetes status, history of CVD status, smoking status [current smoker and never- or former smoker], systolic blood pressure [180 and 140 mm Hg], eGFR [15 and 25 ml/min per 1.73 m²], and ACR [30, 100, and 1,000 mg/g]). To do this, we fitted multinomial models and weighted them by the inverse probability of each outcome from simulations (e.g., KRT only; CVD only, death only; KRT followed by CVD, CVD followed by KRT, and so forth). Multinomial models incorporated all the available covariates and two-way interactions significant for any of the outcomes. Calibration of the multinomial model to the simulated outcomes was assessed using R² and root-mean-squared errors for each outcome. Functional forms of covariates were the same as those used in the competing risk regression. For the purposes of this manuscript, predicted probabilities in the figures and text stem from the multinomial model.

Comparison of our developed risk model with the KFRE and observed risk
We compared absolute risk estimates of the probability of KRT from our newly developed risk model to that calculated in the absence of competing events using the previously published KFRE.7,8 To do this, we held shared variables constant (age, sex, eGFR, and ACR) and varied the covariates unique to our model (race, systolic blood pressure, diabetes mellitus, smoking status, and history of CVD), and we assessed R² within cohorts. We also compared risk predictions from our developed risk model as well as the KFRE to observed KRT risk. To do this, we divided predicted risk categories into <20%, 20% to 40%, >40% probability of KRT in the subsequent 2 years (clinically meaningful thresholds), using our developed risk model and the KFRE, and then we plotted the mean risk estimate against the observed risk within each category by cohort. Discrimination was assessed using the C statistic. All analyses were done using Stata 14 MP software (College Station, TX).
KIDNEY DISEASE: IMPROVING GLOBAL OUTCOMES FOUNDATION CONTROVERSIES CONFERENCE ON PROGNOSIS AND OPTIMAL MANAGEMENT OF PATIENTS WITH ADVANCED CKD

Kai-Uwe Eckardt (Conference Co-Chair), Brenda Hemmelgarn (Conference Co-Chair), David C. Wheeler (KDIGO Co-Chair), Wolfgang Winkelmann (KDIGO Co-Chair), John Davis (CEO), Danielle Green (Managing Director), Michael Cheung (Chief Scientific Officer), Tanya Green (Communications Director), Melissa McMahan (Programs Director).

DISCLOSURE

JJC received consulting fees from Astellas, lecture fees from Abbvie, and grant support from AstraZeneca and ViforPharma donated to Karolinska Institutet. HJLH received consulting fees from Abbvie, AstraZeneca, Boehringer Ingelheim, Fresenius, Janssen, and Merck; lecture fees from AstraZeneca and Boehringer Ingelheim; and grant support from AstraZeneca and Boehringer Ingelheim. KH received lecture fees and is under negotiation for grant funding from Sanofi-Genzyme and has royalties from Partner’s Healthcare patent #5,356,775. SDN received grant support from the National Institutes of Health. BS received consulting fees from Merck Sharp & Dohme and grant support from Amgen, Baxter, Lilly, Fresenius, GlaxoSmithKline, Merck Sharp & Dohme, and Otsuka. AM-MW received lecture fees from Sanofi and travel support from Sanofi and Fresenius Medical Care. AK received grant support from AstraZeneca. ASL received grant support from the National Kidney Foundation, National Institutes of Health, AstraZeneca, and Pharmalink, and holds a provisional patent along with JC (UC, Lesley Inker, and ASL) filed August 15, 2014. – “Precise estimation of glomerular filtration rate from multiple biomarkers” PCT/US2015/044567. The technology is not licensed in whole or in part to any company. Tufts Medical Center, John Hopkins University, and Metabolon Inc. have a collaboration agreement to develop a product to estimate glomerular filtration rate from a panel of markers. MW received consulting fees from Amgen. JC received grant support from the National Institutes of Health and National Kidney Foundation. All the other authors declared no competing interests.

ACKNOWLEDGMENTS

This project was funded by the Kidney Disease: Improving Global Outcomes Foundation. The CKD-PC Data Coordinating Center is funded in part by a program grant from the US National Kidney Foundation, the Kidney Disease: Improving Global Outcomes Foundation, and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK100446-01). A variety of sources have supported enrollment and data collection, including laboratory measurements and follow-up in the collaborating cohorts of the CKD-PC. These funding sources include government agencies such as national institutes of health and medical research councils, as well as foundations and industry sponsors listed in Appendix S3. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Some of the data reported here have been supplied by the United States Renal Data System. The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US government.

SUPPLEMENTARY MATERIAL

Appendix S1. Data analysis overview and analytic notes for some of individual studies.
Appendix S2. Acronyms or abbreviations for studies included in the current report and their key references linked to the web references.

Appendix S3. Acknowledgements and funding for collaborating cohorts.
Table S1. Underlying data selection by cohort.
Table S2. Cause of chronic kidney disease.
Table S3. Random effects meta-analysis of subhazard ratios for KRT, nonfatal CVD, or death as the first event after eGFR <30 ml/min per 1.73 m², 20 cohorts with information on all three outcomes.
Table S4. Random effects meta-analysis of subhazard ratios for nonfatal CVD or death as the second event after KRT, 20 cohorts with information on all three outcomes.
Table S5. Random effects meta-analysis of subhazard ratios for KRT or death as the second event after nonfatal CVD, 20 cohorts with information on all three outcomes.
Table S6. Random effects meta-analysis of subhazard ratios for death as the third event after KRT and CVD, 20 cohorts with information on all three outcomes.
Table S7. Multinomial coefficients from the model approximating the Markov chain results, 2 (A) and 4 (B) years.
Figure S1. Distribution of eGFR by cohort, color-coded by cohort type.
Figure S2. Distribution of ACR by cohort, color-coded by cohort type.
Figure S3. Forest plot of the subhazard ratio associated with 5 ml/min per 1.73 m² lower eGFR for risk of first KRT, across 20 cohorts with data on KRT, CVD and death.
Figure S4. Forest plot of the subhazard ratio associated with 10-fold higher urine albumin-to-creatinine ratio for risk of first KRT, across 20 cohorts with data on KRT, CVD, and death.
Figure S5. Adjusted* cumulative incidence of (A) CVD after first KRT and (B) death after first KRT from Markov model. Color coding of the lines is described in (C).
Figure S6. Adjusted* cumulative incidence of (A) KRT after first nonfatal CVD and (B) death after first nonfatal CVD from Markov model. Color coding of the lines is described in (C).
Figure S7. Adjusted* cumulative incidence of (A) death after having experienced both KRT and CVD from Markov model. Color coding of the lines is described in (B).
Figure S8. The probability and timing of clinical outcomes at 2 and 4 years with increasing level of ACR.
Figure S9. The probability and timing of clinical outcomes at 4 years, varied by diabetes status.
Figure S10. The probability and timing of clinical outcomes at 4 years, varied by SBP level.
Figure S11. The probability and timing of clinical outcomes at 4 years, varied by history of CVD.
Figure S12. The probability and timing of clinical outcomes at 4 years, varied by age.
Figure S13. The probability and timing of clinical outcomes at 4 years, with further subdivision by age.
Figure S14. Absolute risk projections for KRT at 2-years for a set of scenarios for a 35-year old man (A) or woman (B).
Figure S15. Absolute risk projections for KRT at 2-years for a set of scenarios for a 45-year old man (A) or woman (B).
Figure S16. Absolute risk projections for KRT at 2-years for a set of scenarios for a 55-year old man (A) or woman (B).
Figure S17. Absolute risk projections for KRT at 2-years for a set of scenarios for a 65-year old man (A) or woman (B).
Figure S18. Absolute risk projections for KRT at 2-years for a set of scenarios for a 75-year old man (A) or woman (B).
Figure S19. Absolute risk projections for KRT at 2-years for a set of scenarios for an 85-year old man (A) or woman (B).
Figure S20. Calibration of the predicted versus observed 2-year risk of KRT for the (A) kidney failure risk equation (KFRE) and (B) MCMC model.
REFERENCES

