MINIMAL CHANGE DISEASE
FOCAL AND SEGMENTAL GLOMERULOSCLEROSIS

Dr Elisabeth Hodson
Cochrane Kidney and Transplant
Centre for Kidney Research, The Children’s Hospital at Westmead
Sydney School of Public Health, University of Sydney
Sydney, Australia
elisabeth.hodson@health.nsw.gov.au
emhodson@exemail.com.au
Disclosure of Interests

• No relevant disclosures
Minimal change disease/steroid sensitive nephrotic syndrome in children
Duration of prednisone for the initial episode of childhood SSNS:
Number with FRNS at 1-2 years*

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>3 months or more</th>
<th>2 months therapy</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Norero 1996</td>
<td>3</td>
<td>29</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Ueda 1988</td>
<td>3</td>
<td>17</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>APN 1993</td>
<td>6</td>
<td>34</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>Bagga 1999</td>
<td>7</td>
<td>22</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Jayantha 2002a</td>
<td>8</td>
<td>48</td>
<td>26</td>
<td>70</td>
</tr>
<tr>
<td>Yoshikawa 2014</td>
<td>45</td>
<td>122</td>
<td>48</td>
<td>124</td>
</tr>
<tr>
<td>PREDNOS Study 2017</td>
<td>59</td>
<td>113</td>
<td>54</td>
<td>109</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>385</td>
<td>419</td>
<td>100.0%</td>
<td>0.79 [0.58, 1.07]</td>
</tr>
</tbody>
</table>

Total events: 131, 165

Heterogeneity: Tau² = 0.06; Chi² = 10.57, df = 6 (P = 0.10); I² = 43%
Test for overall effect: Z = 1.53 (P = 0.12)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>5 or 6 months</th>
<th>Three months</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Mishra 2012</td>
<td>1</td>
<td>37</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Sharma 2000</td>
<td>8</td>
<td>70</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Hiraoka 2003</td>
<td>10</td>
<td>36</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>Sinha 2014</td>
<td>36</td>
<td>92</td>
<td>35</td>
<td>89</td>
</tr>
<tr>
<td>Teeninga 2013</td>
<td>38</td>
<td>64</td>
<td>31</td>
<td>62</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>299</td>
<td>292</td>
<td>100.0%</td>
<td>0.78 [0.50, 1.22]</td>
</tr>
</tbody>
</table>

Total events: 93, 106

Heterogeneity: Tau² = 0.15; Chi² = 12.05, df = 4 (P = 0.02); I² = 67%
Test for overall effect: Z = 1.07 (P = 0.28)

*Hahn D et al. CDSR 2015, CD001533
Prednisone + steroid-sparing agents to prolong time to first relapse in children with SSNS

- **Azithromycin (Zhang 2014). RCT**
 - Intervention: Azithromycin + prednisone (106)
 - Comparator: Prednisone (105)
 - Outcome at 6 months:
 - No difference in number with relapse or FRNS at 6 months

- **INTENT study (EudraCT 2014-001991-76. N=400/340; Germany). RCT**
 - Intervention: Prednisone till remission, then MMF for rest of 12 week induction period. Alternate day prednisone for 2 weeks
 - Comparator: 6 weeks daily and 6 weeks alternate day prednisone
 - Outcome: First relapse within 24 months
 - 110 recruited to date. Completion expected 2020 (Dr Marcus Benz)

- **NEPHROVIR3 study (NCT02818738. N 156: France). RCT**
 - Intervention: Levamisole for 6 months after first remission
 - Comparator: Placebo for 6 months after first remission
 - Recruitment not started. Completion expected 2020
Steroid regimens to prevent relapse in children with SSNS

- Yadav et al 2016 (CTRI/2012/12/003194; Pediatric Nephrology (2016) 31:1752)
 - Open label RCT enrolling 62 children aged 1-16 years with FRNS without steroid toxicity
 - Intervention: Daily prednisone 0.2-0.3 mg/kg/day for 12 months
 - Comparator: Alternate day prednisone 0.5–0.7 mg/kg/day for 12 months
Steroid regimens to prevent relapse in children with SSNS

• Reduced prednisone schedule vs standard schedule
 – RESTERN study 2017 (EudraCT - 2016-002430-76; BMJ Open 2017;7:e018148)
 • Double-blind RCT enrolling 144 children aged 1-18 years with relapse of SSNS
 • Intervention: Reduced prednisone schedule (daily till remission, alt day for 2 weeks)
 • Comparator: Standard prednisone schedule (daily till remission, alt day for 6 weeks)
 • Outcome: Time to next relapse

• Increased dose of prednisone to prevent relapse with infections
 – Abeyagunawardena 2017 (Pediatric Nephrology 32: 1377-1382, 2017)
 • Cross-over study (48 patients/33 completed) showed fewer relapses in children with FRNS (not on prednisone) given daily prednisone at onset of infection compared with placebo
 – PREDNOS 2 Study (EudraCT – 2012-003476-39)
 • RCT comparing 6 days of prednisone with placebo in children with FRNS & URTI
 • Results awaited. 295/360 patients enrolled to date (data from N. Webb)
Levamisole reduces the risk of relapse in children with FRNS

Eudra CT 2005-005745-18
The relative efficacies of CNIs and MMF in children with FRNS

MMF vs TAC
(non-randomised comparator study)
Should rituximab be used as first line steroid-sparing agent in children with SDNS?: Efficacy

Should rituximab be used as first line steroid-sparing agent in children with SDNS?: Adverse effects

Reported in nephrotic syndrome
- Infusion reactions
- Fever, skin rash, arthritis
- Hypersensitivity in 2nd courses
- Hypogammaglobulinaemia
- Infections
- Fulminant myocarditis
- Pulmonary fibrosis
- Pneumocystitis pneumonia
- Immune-mediated ulcerative colitis
- Agranulocytosis

Reported in other conditions
- Reactivation of Hep B virus
- Progressive multifocal leucodystrophy
- Secondary malignancies
- Death due to infections
Minimal change disease in adults
Tacrolimus for adults with new-onset MCD

- Li et al 2017 (JASN 28: 1286-1295, 2017; ChiCTR-TRC-11001454)
 - Intervention (N=63): 10 days of IV MP, then tacrolimus for 36 week with FU to 64 weeks
 - Comparator (N=56): 10 days of IV MP, then prednisone for 36 weeks with FU to 64 weeks
 - 1er outcome: remission at 12 wks, Tac 52/56 (93\%) vs pred 51/53 (96\%)

\textbf{2er outcome: Relapse}
No relapse: TAC 55\%; Pred 51\%

\textbf{2er outcome: SAE}
TAC 2; Pred 7
Other studies of steroid-sparing agents in adults with MCD*

Table 3. Published experience for the treatment of steroid-resistant, SD, and FR MCD in adults

<table>
<thead>
<tr>
<th>Medication</th>
<th>Evidence</th>
<th>Regimen</th>
<th>Remission Rates</th>
<th>Relapse Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR* SD FR SR* SD FR</td>
<td></td>
</tr>
<tr>
<td>Oral CYC</td>
<td>Observational series; one RCT in adults</td>
<td>2–2.5 mg/kg per d×8 wk</td>
<td>50%–80% 50%–80% 50%–80%</td>
<td>50% 25%–56% 25%–56%</td>
</tr>
<tr>
<td>iv CYC</td>
<td>Two small RCTs in adults</td>
<td>750 mg/m² per mo×6 mo + steroids</td>
<td>50% 77% NA</td>
<td>14% 40% NA</td>
</tr>
<tr>
<td>Cyclosporine ± prednisone</td>
<td>Large observational series data; one small RCT in children and one RCT in adults</td>
<td>3–5 mg/kg per d in divided dose×1–2 yr</td>
<td>45%–92% 45%–92% 45%–92%</td>
<td>NA 62%–75% 62%–75%</td>
</tr>
<tr>
<td>Tacrolimus ± prednisone</td>
<td>Small observational series; two small RCTs in adults</td>
<td>0.05–0.1 mg/kg per d in divided dose×1–2 yr</td>
<td>79%–100% 91%–100% NA</td>
<td>40% 50% NA</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
<td>Small observational series; one small RCT in children</td>
<td>1–2 g/d in divided dose</td>
<td>25% 80%–100% 58%</td>
<td>NA 20%–50% 20%–50%</td>
</tr>
</tbody>
</table>

*Hogan & Radhakrishnan JASN 24: 702-711, 2013
Observational studies of steroid sparing agents in relapsing MCD in adults

- **Sandoval 2017**: Mycophenolate mofetil/sodium (MF) + prednisone
 - Report of 29 adults with FRNS/SDNS
 - Remission in 27 (25 CR, 2 PR)
 - Medication ceased after 12-49 months in 20; 9 relapsed & achieved continued remission with further pred/MF

- **Guitard 2014**: Rituximab
 - Report of 41 adults with SDNS; variable dosing; 21 in remission & 20 in relapse
 - Remission in 32 (25 CR, 7 PR); 18 (5 PR) relapsed after 3-36 mths & 17 re-treated with remission in all (13 CR, 4 PR)

- **Ruggenenti 2014**: Rituximab
 - Report of 20 adults & 10 children with FRNS/SDNS; 1 or 2 doses
 - At one year, all in remission & 15 never relapsed
Investigational treatment for MCD

- Angiopoietin-like protein 4 (Angptl4) is a secretory glycoprotein that is essential for maintenance of the negative charge of GBM.
- Glomerular expression of Angptl4 is glucocorticoid sensitive
- Rats overexpressing Angptl4 develop nephrotic proteinuria, loss of GBM charge and foot process effacement
- Podocyte-secreted hyposialylated Angptl4 appears to mediate proteinuria in MCD
- N-acetyl-D-manosamine (ManNAc) converts hyposialylated Angptl4 to sialylated protein and it reverses proteinuria in experimental models
- Phase 1 study (NCT02639260) of ManNAc commenced 2015; will enrol 12 adult subjects with MCD, FSGS, MN in relapse
FSGS/SRNS in children and adults
The six forms of FSGS: prevalence among US adults*

Genetic FSGS: Studies of causative mutations in 187 children with SRNS/CNS*

- Single gene mutations identified in 26% of 187 children aged < 19 years in 17/53 known SRNS genes.
- Mutations in 59% (13/22) familial SRNS and 22% (36/164) non-familial SRNS.

FSGS in African Americans associated with mutations in \textit{APOL1} (encodes apolipoprotein L1)

- NIH study*
 - FSGS in African Americans associated with homozygous or compound heterozygotes of G1 and G2 variants of \textit{APOL1} (OR 16.9 (95% CI 11–26.5))
 - Two renal risk alleles associated with earlier age of onset of FSGS & faster progression to ESKD
 - \textbf{BUT} – no difference in response to corticosteroids (8 weeks)
 - 29\% (2 renal risk alleles)
 - 33\% (0-1 risk alleles)

- FSGS-CT**
 - 94/138 genotyped for \textit{APOL1} renal risk alleles; 27 had 2 risk alleles
 - Two risk alleles associated with lower kidney function, more rapid progression to ESKD, more glomerulosclerosis and interstitial fibrosis
 - \textbf{BUT} – no difference between 2 renal risk alleles and 0-1 renal risk alleles in response to treatment (cyclosporin, MMF, dexamethasone)

Differentiation between primary and secondary (adaptive) FSGS*

Table 2. Clinical and histological characteristics of primary versus secondary FSGS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Primary FSGS</th>
<th>Secondary FSGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical presentation</td>
<td>Acute onset</td>
<td>Proteinuria develops gradually</td>
</tr>
<tr>
<td>Serum albumin</td>
<td><3.5 g/dL b</td>
<td>≥3.5 g/dL</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>≥3.5 g/24 h</td>
<td>Variable but can be >3.5 g/24 h</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Edema</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Glomerulomegaly</td>
<td>Less common (30%)</td>
<td>Common (70%)</td>
</tr>
<tr>
<td>Foot process effacement</td>
<td>Diffuse (>80%)</td>
<td>Segmental (<50%)</td>
</tr>
<tr>
<td>Clinical course</td>
<td>Dependent on response to</td>
<td>Slowly</td>
</tr>
<tr>
<td></td>
<td>immunosuppressive therapy</td>
<td>progressive</td>
</tr>
</tbody>
</table>

*Excluding collapsing FSGS.

b Usually at presentation or developing shortly after if proteinuria persists at >3.5 g/24 h.

c Provided patients are not receiving immunosuppressive therapy previously or at the time of renal biopsy.

Renal survival by response to immunosuppressive agents in children with SRNS (*PoDoNet cohort)

*Trautmann et al. JASN. 28: 3055-3065, 2017

KDIGO Controversies Conference on Glomerular Diseases
November 16-19, 2017 | Singapore
Problems with treatment studies in FSGS/SRNS*

• Heterogeneous population
 – Recruitment of patients with adaptive FSGS, including patients with proteinuria without nephrotic syndrome
 – No requirement for EM in studies so the extent of foot process effacement not known
 – Inclusion of patients with FH of nephrotic syndrome; lack of genetic studies
 – Inclusion of patients with primary and delayed steroid resistance
 – Inclusion of patients with MCD and MesPGN

• Inadequate patient recruitment so the studies are underpowered to detect a difference between treatment groups

Interventions for SRNS (FSGS/MCD): RCTs

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Intervention</th>
<th>Control</th>
<th>Duration (mths)</th>
<th>Remission (Complete + Partial)</th>
<th>RR (95% CI) for remission</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSGS-CT 2011</td>
<td>138 A+C</td>
<td>Cyclosporin</td>
<td>MMF + dexamethasone</td>
<td>12</td>
<td>33 (46%) vs 22 (33%)</td>
<td>1.35 (0.90-2.10)</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Ren 2013</td>
<td>33 A</td>
<td>Tacrolimus + prednisone</td>
<td>IV CPA + prednisone</td>
<td>6</td>
<td>10 (67%) vs 10 (56%)</td>
<td>1.20 (0.69-2.07)</td>
<td>No significant difference</td>
</tr>
<tr>
<td>APN 2008</td>
<td>32 C</td>
<td>Cyclosporin + prednisone</td>
<td>IV CPA + prednisone</td>
<td>3</td>
<td>9 (60%) vs 3 (18%)</td>
<td>3.40 (1.12-10.28)</td>
<td>Remission CSA > CPA</td>
</tr>
<tr>
<td>Gulati 2012</td>
<td>124 C</td>
<td>Tacrolimus + prednisone</td>
<td>IV CPA + prednisone</td>
<td>12/6</td>
<td>53 (80%) vs 28 (43%)</td>
<td>1.80 (1.34-2.42)</td>
<td>Remission Tac > CPA</td>
</tr>
<tr>
<td>Magnasco 2012</td>
<td>31 C</td>
<td>Rituximab/ Cyclosporin/ prednisone</td>
<td>Cyclosporin/ prednisone</td>
<td>3</td>
<td>3 (19%) vs 3 (20%)</td>
<td>0.94 (0.22-3.94)</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Sinha 2017</td>
<td>60 C</td>
<td>Tacrolimus + prednisone</td>
<td>MMF + prednisone</td>
<td>12</td>
<td>28 (90%) vs 13 (45%)</td>
<td>2.01 (1.32-3.07)</td>
<td>Maintains Remission Tac > MMF</td>
</tr>
</tbody>
</table>
Other immunosuppressive treatments for FSGS

• mTOR inhibitors
 – Evidence that mTOR inhibitors can exacerbate FSGS

• ACTH gel (Hogan. CJASN 8: 2072-2081, 2013; NCT01155141; NCT01129284)
 – Report of 24 patients with FSGS (6 steroid dependent; 15 steroid resistant) treated with ACTH gel (80 units twice weekly sc for variable duration).
 – 7 showed response (CR 2, PR 5) including 5 with SRNS; 5 had sustained response (range 23-104 weeks) and 2 relapsed
 – 21 had adverse effects; 23 episodes of corticosteroid-like adverse effects

• ACTH gel in children
 – NCT02972346: RCT in China comparing ACTH gel with no specific treatment in ages 3-12 years for SDNS/SRNS
 – NCT02132195: RCT in USA comparing ACTH gel with no specific treatment in ages 2-20 years for FRNS/SDNS with FSGS or MCD; SRNS excluded
Investigational treatments for primary FSGS*

• Blocking TGF-β reduces fibrosis in experimental CKD
 – Fresolimumab (monoclonal antibody against 3 isoforms of TGF-β)
 • Phase 1 study: 3/16 had ≥ 50% reduction in proteinuria
 • Phase 2 study: 2/36 achieved PR. (Vincenti et al Kid Int Rep (2017) 2: 800-810; NCT01665391)

• TNF-α can mediate proteinuria and fibrosis in FSGS
 – Adalimumab is a monoclonal antibody against TNF-α
 • FONT Study (1): 4/10 had 50% reduction in proteinuria
 • FONT Study (2): 0/7 had any reduction in proteinuria

• Blocking B7-1 (CD80) expression with abatacept
 – Remission in 4 patients with rFSGS & 1 with primary FSGS; all had B7-1 staining of podocytes (Yu 2013)
 – Response in 1 of 25 other reported patients with rFSGS
 – Crossover RCT comparing abatacept with placebo in 90 patients (adults/children with MCD or FSGS; not post Tx recurrence) commenced in 2016; results in 2020 (NCT02592798)

*Trachtman 2017: Expert Opinion on Investigational Drugs 2017; 26: 945-952
Investigational treatments for primary FSGS*

- Angiotensin type 1 & endothelin receptors type A promote vasoconstriction & extracellular matrix accumulation
 - DUET study: RCT comparing sparsantin with irbesartan for 8 weeks in 96 patients with FSGS (Trachtman ASN abstracts 2016, 2017: NCT 01613118)
 - UPC <1.5 g/g in 28% SPAR vs 9% IRB
 - Benefit persisted for 48 weeks in extension study
- Binding of circulating factors
 - Galactose can bind circulating factors
 - 0/7 children on galactose achieved CR or PR (Sqambat 2013; NCT01113385)
 - 2/7 treated with Galactose and 2/7 treated with standard therapy achieved PR (FONT 2, 2015: NCT00814255)

*Trachtman 2017: Expert Opinion on Investigational Drugs 2017; 26: 945-952
Other investigational treatments for FSGS*

- **Blocking JAK/STAT pathway**
 - Rationale: JAK/STAT inhibitor reverses increased glomerular permeability to albumin after exposure to FSGS plasma or cardiotrophin-like cytokine factor-1 (CLCF-1)

- **Retinoic acid treatment (NCT00098020)**
 - Rationale: Retinoids restore podocyte phenotype and reduces proteinuria
 - Phase 1 study of isotretinoin in 10 adults with MCD/FSGS for 6 months completed

- **Blocking Notch 1**
 - Rationale: Significant activation of Notch 1 in FSGS
 - Signature of this pathway in FSGS patients could identify patients for trials of Notch 1 inhibitors

- **Complement antagonists**
 - Rationale: 5 of 19 patients in FSGS-CT showed complement activation
 - Demonstrating complement activation could allow eculizumab use in a subset of FSGS patients

- **Infusion of mesenchymal stem cells**
 - Rationale: Improvement in experimental models of kidney disease
 - NCT02382874 currently recruiting

*Trachtman 2017: Expert Opinion on Investigational Drugs 2017; 26: 945-952
“Neptune” schema for integrative genomics of nephrotic syndrome*

Remember the child/adult/family with nephrotic syndrome*

- Understandable
- Individualized
- Accurate
- Credible
- Timely

Getting the Right Information

- Tracking/Monitoring
- Knowing what to look for
- Preventing & managing relapse
- Managing medications & side effects
- Diet

Understanding the Diagnosis & Approach to Treatment

- Getting a diagnosis
- Understanding NS
- Knowing what to expect
- Learning about medications

Learning to Manage NS

*Beanlands NDT (2017) 32: i98 - i105
Acknowledgements to Cochrane Kidney and Transplant

- Gail Higgins. Information specialist
- Fiona Russell. Managing Editor
- Narelle Willis. Copy Editor
- Leslee Edwards. Administrative Officer
- Jonathan Craig. Coordinating Editor
- Giovanni Strippoli. Deputy Coordinating Editor
- Elaine Beller. Deputy Coordinating Editor