

NEWBORN SCREENING FOR FABRY DISEASE

Dietrich Matern, MD, PhD Biochemical Genetics Lab Mayo Clinic

Disclosure of Interests

Relevant financial relationship(s)

Consultant, Mayo Clinic

Research Support

National Institute of Child Health and Development (NICHD) Newborn Screening Translational Research Network (NBSTRN) Legacy of Angels Foundation Hunter's Hope Foundation GlaxoSmithKline

Off-label usage(s) None

Why NBS for LSDs?

- LSDs are historically devastating conditions but now increasingly treatable.
- Prognosis better when treatment started early (NBS!).
- Dried blood spot (DBS) based assays now available.

Dried Blood Spot (DBS) based Assays for LSDs

May 2006 · Vol. 8 · No. 5, Supplement

executive summary

Michael S. Watson, PhD, Marie Y. Mann, MD, MPH, Michele A. Lloyd-Puryear, MD, PhD, Piero Rinaldo, MD, PhD, and R. Rodney Howell, MD, editors

The Maternal and Child Health Bureau commissioned the American College of Medical Genetics to outline a process for the standardization of outcomes and guidelines for state newborn screening programs and to define responsibilities for collecting and evaluating outcome data, including a recommended uniform panel of conditions to include in state newborn screening programs. The expert panel identified 29 conditions for which screening should be mandated. An additional 25 conditions were identified because they are part of the differential diagnosis of a condition in the core panel, they are clinically significant and revealed with screening technology but lack an efficacious treatment, or they represent incidental findings for which there is potential clinical significance. The process of identification is described, and recommendations are provided. *Genet Med* 2006:8(5, Supplement): 1S–11S.

ACMG Panel: final score

Fig. 1. Scoring by test availability (separates out those conditions that have an acceptable, validated, population-based screening test from those that do not).

ACMG Panel: final score

Fig. 1. Scoring by test availability (separates out those conditions that have an acceptable, validated, population-based screening test from those that do not).

www.hrsa.gov/advisorycommittees/mchbadvis	ory/heritable	disorders/recommendedpanel/index.htm		earch		☆		•	↑ √
ome ⑰ Mayo Medical Laborat ⑰ Biochemic te '곌 Capture ? Help	al Genetics	。 🤫 BGL Genetics Form ら PubMed H	ome 💈 OMIM I	Home 🛞 MN	I-NBS 🔠 Re	gion 4 👯 Ma	ayo Clinic CLIR	ন্টি CLIR	S GeneTe
U.S. Department of Health a	nd Human S	Services					ww	v.hhs.g	ov
Advisory Commit	too on	Haritable Disorda	re in					Searc	h
Newborns and Ch	ildren		15 111						
HRSA Home > Advisory Committees					0:	Share 😂	7	+1 1	
Home	Rec	commended Uni	form						
Recommended Uniform Screening Panel	Scr	eening Panel							
Nominate a Condition	Printer-	Friendly Recommended Uniform S	creening Pane	(PDF - 59	KB)				
Nominated Conditions		Recor	nmended Unifo	orm Screenir	ng Panel ¹				
Reports			Core ² Co	onditions ³					
Recommendations and Responses from the Secretary			(as of Ma	rch 20 <mark>1</mark> 5)					
Meetings			Met	abolic Disc	order				
About the Committee	ACMG	Core Condition				Endocrine	Hemoglob	in Oth	er
	Code		Organic acid condition	Fatty acid oxidation disorders	Amino acid disorders	Disorder	Disorder	Disor	rder
			-			<u> </u>			_
	PROP	Propionic acidemia	X						

Cbl

Methylmalonic acidemia (cobalamin

Why NBS for LSDs

- LSDs are historically devastating
 - conditions but now increasingly treatable
- Prognosis better when treatment started early (NBS!)
- Dried blood spot (DBS) based assays now available
- Pressure from advocacy groups

Fabry Disease

² U.S. Department of Health and Human Services

Advisory Committee on Heritable Disorders in Newborns and Children

*(External) Evidence Review Group

Fabry Disease

- α-galactosidase A (GLA) def.
- X-linked, but most females will become symptomatic
- Accumulation of glycosphingolipids > Disruption of cellular metabolic processes > cell death > inflammation > progressive organ dysfunction
- Not life-threatening in childhood
- Classic vs. later onset cardiac and renal variants

Table 2Summary of reported clinical manifestations inFabry patients (newborn-4 years)^{2,13,16,27-32,36,40,41,51}

Fabry-related signs and symptoms	report of symptom
Storage of globotriaosylceramide found in organs on biopsy	Prenatal
Corneal whorls/verticillata	Prenatal/ newborn
Gastrointestinal problems, including nausea, vomiting, diarrhea, constipation, and abdominal pain	1.0 year
Slow growth in boys (mean height/weight <50th percentile)	2.0 years
Intermittent acroparesthesia/neuropathic pain triggered by stress, heat, fatigue, or exercise	2.0 years
Hypohidrosis or anhidrosis	2.5 years
Fabry crises of agonizing neuropathic pain typically begin in the hands and feet and may radiate proximally	2.5 years
Heat, cold, and/or exercise intolerance	3.5 years
Retinal vascular tortuosity	4.0 years
Tinnitus/vertigo	4.0 years
Low glomerular filtration rate	4.0 years
T-wave inversion on electrocardiogram	4.0 years
Trivial cardiac valve disease	4.0 years
Angiokeratoma	4.4 years

Laney DA et al. Fabry disease in infancy and early childhood: a systematic literature review. *Genet Med.* 2015; 17: 323-30

Diagnosis of Fabry Disease

- Clinical and/or (maternal) family history
- Non-specific symptoms >> late or missed diagnoses
- Routine labs: not informative!
- Specialty labs:
 - GLA enzyme assay in DBS or WBC (unreliable for female carriers)
 - Molecular genetic analysis of GLA (esp. females)
 - Urine globotriaosylceramide (Gb3) (informative in newborns?)
 - Plasma lyso-Gb3 (informative in newborns?)

Newborn screening

- Currently done in Taiwan, MO and IL by GLA activity assay
- Several other pilot projects completed/underway (WA, Austria, Hungary, Mayo)

Treatment:

- Enzyme replacement therapy (Fabrazyme, Replagal)
- Chaperone, substrate reduction, and gene therapy trials ongoing

High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*

Marco Spada, Severo Pagliardini, Makiko Yasuda, Turgut Tukel, Geetha Thiagarajan, Hitoshi Sakuraba, Alberto Ponzone, and Robert J. Desnick

The classic phenotype of Fabry disease, X-linked α-galactosidase A (α-Gal A) deficiency, has an estimated incidence of

Family studies revealed undiagnosed Fabry disease in affected individuals. In this population, the incidence of α -Gal A deficiency was 1 in ~3,100, with an 11:1 ratio of patients with the later-onset:classic phenotypes.

These results suggest that the later-onset phenotype of Fabry disease is underdiagnosed among males with cardiac, cerebrovascular, and/or renal disease.

Newborn Screening for Fabry Disease

Table 2 – Summary of test methods, results, and performance metrics from screening studies of mo	e than 30,000 newborns for Fabry disea	ease.
--	--	-------

Country/state	Taiwan	Taiwan	Taiwan	Austria	Hungary	WA	MO
Condition	Fabry	Fabry	Fabry	Fabry	Fabry	Fabry	Fabry
Method	Fluorometry	Fluorometry	MS/MS	MS/MS	MS/MS	MS/MS	DMF
# of NBS samples	110,027	171,977	191,767	34,736	40,024	108,905	43,701
TP	42 (m); 3(f)	73 (m); 2 (f)	64	6 (m); 3 (f)	- (m); 3 (f)	7 (m)	15 (m)
FP*	1052 (m); 512 (f)	565 (m); 323 (f)	315	19	31	6 (m); 3 (f)	13
FPR	1.83% (m); 0.97% (f)	0.63% (m); 0.40% (f)	0.16%	0.05%	0.08%	0.01% (m); 0.006% (f)	0.03%
PPV	3.84% (m); 0.58% (f)	11% (m); 0.62% (f)	17%	32%	9%	54% (m)	54%
Frequency: 1 in	1368 (m)	1237 (m)	2996	3860	13,341	7800 (m)	2913 (m + f)
Follow-up	Clinical	Clinical	Clinical	Mol. genetics ^b	Mol. genetics ^b	Mol. genetics ^b	Clinical
Patients	1 (m) and 42 (m) late	86% (m) late onset	8 (m), 53 late (m), and 3(f)	All late onset, 9 of the FP cases carry SVs	2 Uncertain significance	Mutations suggest late onset	10 (m), 4 late (m), and 1 uncertain (m)
Second tier test	No	Yes (beta-galactosidase/ alpha-galactosidase ratio)	No	No	No	No	No
References	75	9	74	38	39	75	42

DMF, digital microfluidics; f, female; FP, false-positive cases; FPR; false-positive rate; m, male; MS/MS, flow-injection tandem mass spectrometry; PPV, positive predictive value; TP, true positive cases. * False-positive cases (FP) are based on the first DBS sample and include carriers with sequence variants considered non-disease causing by the relevant programs. * Study used de-identified samples.

Matern D et al. Sem Perinatol. 2015; 39: 206-216

Minnesota NBS Performance

Condition	FPR	PPV	Detection Rate	Unnecessary evaluations/month (100,000 births/yr)
Aminoacidopathies	0.02%	45%	1: 5,660	2
FAO disorders	0.04%	36%	1 : 5,108	3
Organic acidemias	0.03%	49%	1: 3,952	2
Biotinidase def.	0.09%	9%	1 : 11,635	7
CAH (with 2 nd tier)	0.11%	8%	1 : 11,023	9
Cong. Hypothyroid.	0.21%	27%	1 : 1,232	18
Cystic fibrosis	0.34%	5%	1: 5,511	28
Galactosemia	0.06%	22%	1: 6,545	5
Hemoglobinopathies	0.02%	67%	1: 2,685	2

Fabry Disease

Maryam Banikazemi, M.D. Neurogenetics New York University at Rivergate 403 East 34th Street New York, NY 10016

U.S. Department of Health and Human Services

Advisory Committee on Heritable Disorders in Newborns and Children

Dear Dr. Banikazemi:

The Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC) received your nomination form and all accompanying materials (nomination package) for Fabry Disease on January 7, 2008. The ACHDNC reviewed the nomination package and reported the results of that review on August 7, 2008. Based on a review of the nomination form and accompanying materials, the decision was made not to send the nomination package forward to the ACHDNC's evidence review group at this time.

Although Fabry Disease is technically detectable in a screening panel for lysosomal storage disorders, the Committee felt that there were several factors that limit its appropriateness for inclusion in the routine newborn screening panel at this time; a) variable and possible late onset (>10 years) of the disease; b) unclear if those at highest risk of serious symptoms can be discerned in newborns; c) the lack of published data of preventive treatment early in life; d) some risk of immunologic response to enzyme replacement therapy; and e) the need for a prospective study of screening and therapeutic intervention to demonstrate the benefit of newborn screening for Fabry Disease. The ACHDNC is available for further discussion of screening newborns for Fabry Disease. The next ACHDNC meeting is October 1-2, 2008. ACHDNC may be contacted at 301-443-1080 if you wish to make public comments at this meeting.

Thank you for your interest and support of newborn screening programs and the ACHDNC's activities.

Sincerely yours,

Rejected because of uncertainties about:

- variable/late onset of disease,
- sensitivity of screening test,
- effectiveness of and immunologic response to treatment, and
- lack of prospective NBS and treatment studies

/s/

R. Rodney Howell, M.D. Chairperson

NBS for LSDs in the USA 2015

NBS for Fabry Disease in the USA 2015

NBS for Fabry Disease

Some considerations:

- Cost of screening (1st tier, 2nd tier)
- Cost of follow up
- Differentiation between classic disease vs. milder variants vs. pseudodeficiency
- Cost of treatment
- Short/long term efficacy of treatment
- Acceptance by society vs. affected families
- No FDA approved NBS or confirmatory assay (not really a problem but an issue)

Approaches to NBS for LSDs

Which one should be used?

DISORDER	MS/MS	Immunocapture	Dig. Microfluidics
Fabry disease	+	+	+
Gaucher disease	+	+	+
Krabbe disease	+	+	
MLD		+	
MPS I	+	+	+
MPS II		+	(+)
MPS IIIA		+	
MPS IIIB		_	
MPS VI		+	
Mucolipidosis II/III			
MSD		+	
Niemann-Pick A/B		+	
Pompe Disease	+	+	+
Wilson disease		+	
Aceruloplasminemia		+	
Menkes disease		+	
Friedreich Ataxia		+	
X-Adrenoleukodystrophy	+		
Zellweger spectrum dis.	+		
Acyl-CoA oxidase def.	+		
Bifunctional protein def.	+		

Goal of Mayo Study

To identify an effective and efficient testing approach. NOT to determine which condition should be screened for!!!

What We Found

- The high-throughput assays we tested were well received by the technologists and sufficiently robust
- All assays seem sensitive.
- No assay seems sufficiently specific on its own.
- 2nd tier testing:
 - Genotyping improves specificity ... but may not be cost effective (+ too many variants of uncertain significance)
 - Only few other potentially helpful biomarkers (PSY, GPSY, LSM, lysoGb3, GAGS, LSM)
- Somewhat surprising prevalence findings (means what?).

What could help NBS for Fabry Disease?

- Do not use a simple cut off, but consider 'disease' AND 'normal' ranges
- Do not use GLA as the only screening marker
- Measure other enzymes simultaneously as internal controls
- Measure other enzymes simultaneously and use enzyme activity ratios as additional markers

NBS Data Project

LABORATORY QUALITY IMPROVEMENT SCREENING

GLA-MS DBS - Alpha Galactosidase activity by MS/MS in DBS

Adjustment: No Adjustment

NBS for Fabry Disease MS/MS

GLA Activity Digital Microfluidics

GLA-DMF DBS - Alpha Galactosidase activity by DMF in DBS

Adjustment: No Adjustment

NBS for Fabry Disease Digital Microfluidics

Immunocapture

GLA-LU DBS - Alpha Galactosidase concentration by Luminex in DBS

Adjustment: No Adjustment

NBS for Fabry Disease

Immunocapture

What else could help NBS for Fabry Disease?

- Do not use a simple cut off, but consider 'disease' AND 'normal' ranges
- Do not use GLA as the only screening marker
- Measure other enzymes simultaneously as internal controls
- Measure other enzymes simultaneously and use enzyme activity ratios as additional markers
- Find another marker, even as a 2nd tier test, to increase specificity

Closing Thoughts

If we want Newborn Screening for LSDs, incl. Fabry disease

- Need better definitions of what we want to identify through Newborn Screening:
 - Conditions affecting the baby only?
 - Conditions affecting the baby only early in life (classic phenotypes)
- Need to agree if identification of unknowing family members (mother, uncles) is an appropriate reason for Newborn Screening.

Would "Child Screening" be more appropriate for late onset conditions?

What is the impact of increasing prenatal/-conception genetic screening?

Acknowledgments

John Hopwood

This project has been funded in part with Federal funds from the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (Contract #HHSN275201000017C), the Newborn Screening Translational Research Network (NBSTRN; subcontract #HHSN275200800001C 01), and a generous gift from The *Legacy of Angels* Foundation.

Screening Criteria

1968 - WHO (Wilson & Jungner)

- Treatable illness
- Detectable in newborn period
- Presymptomatic initiation of treatment is beneficial
- Available resources for diagnosis/treatment/follow-up
- Availability of a simple method for sample collection
- Evidence of substantial public benefit & acceptance
- Suitable and simple test methods
- Acceptable costs

2006 - ACMG Criteria

- Clinical characteristics

 (e.g., incidence, burden of disease if not treated,
 phenotype in the newborn);
- Analytical characteristics of the screening test (e.g., availability, features of the platform);
- Diagnosis, treatment and management of the condition in both acute and chronic forms (includes the availability of health professionals experienced in diagnosis, treatment, and management).

