Use of Cell Therapy and Biomedical Engineering in Vascular Access

Prabir Roy-Chaudhury MD, PhD, FRCP (Edin) University of Cincinnati and Cincinnati VAMC

Disclosures

- Off Label use: Optiflow
- Consultant/Advisory Board: Bioconnect, Pervasis, WL Gore, NanoVasc, Proteon, Shire, Medtronic
- Grant/Research Support: NIH, VA, Bioconnect, WL Gore, Proteon, Shire
- Clinical Trial Support: NIH, Pervasis, Proteon, WL Gore

Outline

Pathology and pathogenesis of dialysis vascular access dysfunction

- Interactions between hemodynamics and vascular biology (central to dialysis vascular access dysfunction)
- Novel therapies that target both hemodynamics and vascular biology
- Message for the future!!

A message for the present!!

- Current modalities and therapies for dialysis vascular access are not very effective
- Last real innovation in this field was the tunneled dialysis catheter (early 80's)
- Huge unmet clinical need that needs to be addressed

Radiological presentation of dialysis vascular access dysfunction

- Perianastomotic stenosis
- AVF non maturation

- Stenosis at the graftvein anastomosis
- Graft thrombosis

Histological presentation of dialysis vascular access dysfunction

	SMA	Vim	Des
SMCs	+	-	+
Myofib	+	+	-
Fib.	-	+	-

- Migrated in from the media and perhaps the adventitia
- Response to endothelial and smooth muscle cell injury

Roy-Chaudhury et al. AJKD 2007

Dialysis access stenosis is a balance between vascular remodeling and neointimal hyperplasia

In an ideal world!!!

Hemodynamic and vascular biology interactions

Flow patterns and shear stress influence endothelial function

- Non laminar flow with oscillatory shear (LOW)
- Endothelial activation
- Increased Oxidative Stress
- Inflammatory gene profile (VCAM-1)

AVF/AVG Inward remodeling Neointimal hyperplasia

- Laminar flow with laminar shear (HIGH)
- Endothelial quiescence
- Minimal Oxidative Stress
- Non-Inflammatory gene profile (Nitric oxide)

AVF/AVG Expansive remodeling No neointimal hyperplasia

Surgical configuration influences shear stress profiles

Curved

Straight

Krishnamoorthy et al. Kidney International 2008

Blood flow is greater in the curved configuration

Diameter is greater in the curved configuration

Anatomy, Shear and Stenosis!

Optimize surgical configuration for AVFs and PTFE grafts using surgical devices **Ideal** flow patterns and shear stress profile in AVFs and PTFE grafts **Reduce AVF and PTFE** graft stenosis

Intrinsic Endothelial (dys)function

Hemodynamic forces can influence endothelial response = YES

Intrinsic function or (dys)function the baseline endothelial cell and how this influences its response to shear stress alterations??

ESRD and CKD are states of massive endothelial dysfunction!!

Uremia

- Oxidative stress
- Inflammation

 Reduction in flow mediated dilation (marker of endothelial function)
Kopel et al. F-PO1696, ASN 2009

Uremic mice have increased AV fistula stenosis

Choi et al. JASN. 2008

Uremia and oxidative stress can result in neointimal hyperplasia independent of hemodynamics

% Stenosis	46.6 ± 9.3	
I/M Area Ratio	0.24 ± 0.07	
Average IM Thickness	0.34 ± 0.12	
Maximal IM Thickness	1.16 ± 0.30	

Lee et al. NDT 2011

Hemodynamic and vascular biology interactions: *a challenge and an opportunity*

Optimizing upstream hemodynamics and downstream biology using LOCAL therapy

Upstream Hemodynamics

- DEVICE 1: Optiflow
- DEVICE 2: Hybrid
- DEVICE 3: Spiral Flow

Downstream Biology

- CELL therapy (Vascugel)
- DRUG therapy (Elastase)
- VESSEL therapy

Why have we been so unsuccessful??

Hemodynamics and Vascular Biology

Excellent results as compared to historical controls

- 60 patient European study in Hungary and Greece
- Good data on an interim analysis (29 patients)

Effectiveness	14d	42d	90d		
	patency	patency	patency		
Europe Study (on-going f/u)	100% (25/25)	92% (22/24)	83% (19/23)		
Literature Control	n/a	80% (DAC)	68% (Falk, 2006)		
Safety (n=41)					
3 technical failures requiring device removal					

Watch this SPACE!!!

Inducing Spiral Laminar Flow (Tayside Flow)

NORMAL

GRAFT

- Normal blood flow is spiral
- Turbulent blood flow at the outlet of a graft
- Spiral connector at the end of the graft converts turbulent flow into spiral flow
- Interesting concept but no clinical data at present
- SLOT technique (Shenoy)

Perivascular endothelial cell implants (Vascugel) improve patency in diabetics

Roy-Chaudhury et al. ASN 2009, PO-1576

Perivascular elastase administration (DRUG THERAPY)

- Recombinant elastase
- Applied to the adventitia
- Destroys the elastin in the vessel wall
- Results in a permanent increase in vessel calibre

Abluminal (perivascular) drug delivery

Endovascular device such as the "Bullfrog" micro-infusion catheter (Mercator-Med)

Tailor therapies to the biological course of vascular stenosis

Drug A initially followed by Drug B at 6 monthly intervals

A Message for the Future!!

•Get away from the <u>"one</u> size fits all" paradigm

Individualize Vascular Access Care

- Stratify patients based on clinical and biological parameters
- Offer them the dialysis access that is best suited for them
- Individualize vascular access care through the use of novel technologies

Individualize Vascular Access Care using Novel Technologies

- 25 yr old with large veins and good endothelial function = <u>AVF</u>
- 50 yr old with average veins and moderate endothelial function = <u>AVF "plus"</u>
- 70 yr old with small veins and poor endothelial function = Graft "plus"
- 80 yr old with no veins, poor endothelial function and multiple co-morbidities = <u>Catheter "plus"</u>

"PLUS" = better anatomical configuration, local enhancement of vascular dilation, local anti-proliferative drug therapy, antiinfective and anti-thrombotic coatings Technology can Change Existing Clinical Paradigms!!

 Catheter without infection, thrombosis or central stenosis

• from Fistula First to Catheter First and Last!!

We Live in Exciting Times for Dialysis Access Stenosis!!

It was the best of times...

- Advances in molecular pathogenesis
- Genomics and proteomics
- Advances in biomaterials and delivery technology

It was the worst of times...

- Huge clinical problem
- Growing population
- Elderly and clinically complex patients
- No effective therapies