

HNF1B-related disease: a paradigm of developmental disorder eligible for ADTKD

Prof. Dominique Chauveau
Hôpital de Rangueil & Université de Toulouse
Department of Nephrology and Organ Transplantation
Referral Center for Orphan Renal Diseases
Toulouse - France

Agenda

- Epidemiology
- HNF1B-related nephropathy: a tubulointerstitial disease? pro/con
- How to diagnose HNF1B-related disease?

Extra-renal findings

Family history

Genetic testing is mandatory

- The HNF1B score as a tool for pre-genetic screening
- Specific management

Electrolyte disorders

Transplantation in HNF-1 related disease

Genetic counselling

Prevalence of HNF-1B disease : study cohorts of >50 patients with renal presentation and/or MODY

Presentation	Kidney cysts	Kidney cyst	Kidney	CAKUT	MODY
	or CAKUT	or dysplasia (unexplained	d) familial	
Age at testing	Fetuses ¹	Pediatric ²	Any ³	Any ⁵	Any ⁴
	(2007-2013)	(2006-2011)	(2008-2010) (2014)	(2013)
N. Studies	2	4	3	1	1
N. Subjects	165	343	587	749/ 650 fam	?
N. HNF1B	30	57	118	6	-
(%)	(18%)	(17%)	(20%)	(6.3%)	1%

Data from ¹Decramer (2007) and Madariaga (2013) ² Ulinski (2006), Weber (2006), Adalat (2009) and Thomas (2011) ³Edghill (2008), Nakayama (2010) and Heidet (2010) ⁴Edghill (2013) ⁵Hwang DY Kidney Int (2014)

Prevalence of HNF1B disease in general population?

- Areas where pediatric and adult nephrologists have a long-standing interest for HNF1B disease
- To evaluate prevalence in two independent areas (internal control)
- To estimate simultaneously the prevalence of others orphan renal diseases (Alport syndrome, Fabry disease and nephronopthisis) (external control)

Prevalence of HNF1B in general population?

Identification of cases

- 1) All Renal Units
- 2) Regional Registries for Rare Renal Diseases & Renal Transplantation
- Genetic Lab

Inclusion criteria

- Being a permanent resident in the studied regions
- Established diagnosis of one of the 4 diseases (biochemistry, pathology or genetic test)

Prevalence of HNF-1B disease: descriptive epidemiology in South-West of France, and comparison to rare inherited renal disorders

Area	Midi Pyrénées	Limousin	All	Prevaler	ice (pmh)
N. Inhabitants	2,929 M	0,746	3,675	South-West	Other
(INSEE, 2010)				France	studies
N. diagnosed					
Alport	47	8	55	15	19-25
Fabry	10	3	13	3.7	≈4.0
Nephronopthisis	15	2	17	4.6	?
HNF1B	43	12	55	(15)	?
			Midi-Py	rénées 14.7	
			Lii	mousin 16	

Limitations

This figure likely is an underestimation

- Ascertainement bias (kidney, not diabetes-MODY)
- Undiagnosed cases (wide variability and mild phenotype in adults)

Renal involvement in HNF1B disease

Most frequently affected target-organ

Almost complete penetrance, if correctly detected

Extreme variability among and within families

Right Nx 1978

No diabetes

ESRD 1999 K + = 2,6

I-3, born 1956 2006 : S creat 119, GFR 60 Poor corticomedullary differentiation Few renal cysts, bilateral No reflux Hypokalemia 3,2 - Ku = 50/dMagnesium: 0,52 Proteinuria 0,1g/d No diabetes mellitus 1 liver cyst

> II-3, born 1979 S creat 140, GFR 65 Single left kidney, and cysts

HNF1B point mutation

« ... the renal phenotype in adults with *HNF1B* disease is clearly one of chronic tubulointerstitial nephritis... »

Faguer S et al, Kidney Int 2011, 80, 7:768-76

27 adults from 20 families,
median age at last FU = 35 years (16-74)

Hematuria	0
No proteinuria Low-grade proteinuria (<1 g/d)	74% 26%
Hypertension	7%

Polyuria was not a finding

« ... and slowly progressive kidney failure »

Faguer S et al, Kidney Int 2011, 80, 7:768-76

In addition, in adults with *HNF1B* disease, additional features point to defective tubular transport

Faguer S et al, Kidney Int 2011, 80, 7:768-76

- Tubular leak of either of 2 cations is a very suggestive finding
 - Hypomagnesaemia (Mg⁺⁺< 0.75 mmol/) in 62% resulting from renal wasting (FE_{Mg}: 7-22 %, N<0.5%)
 - Hypokalaemia (< 3.5 mmol/L) in 46%
 Despite renal decline: 10 individuals with CKD 3-5 had K+< 3.5 mmol/L
 1 patient started on dialysis with K+ = 2.6 mmol/L
- → hypokalemia or hypomagnesemia were detected in 15 patients (62%)
- 2 unrelated patients presented with generalized defects of proximal and distal tubular function

Hypomagnesemia (< 0.65 mmol/L) is a frequent finding in children with HNF1b disease

... and is related to renal leak

Target genes HNF1B (2012)?

Tubulogenèse	Différenciation néphronique	Homéostasie epithéliale & transport tubulaire
Socs3	Umod	Fxyd2°
Pax2	Pkhd1	Kif12
LHX1	Pkd2	
Wnt9b	•	

°gène cible chez l'homme

Homodimère (ou hétérodimère $HNF-1\alpha/HNF-1\beta$)

However, some aspects are disputable for typical TKD

- 1. Small sized kidneys is not a frequent finding
- 2. Renal pathology is equivocal
- 3. (Unexplained acute kidney deterioration may occur (3/27, 11%)
- 4. (in contrast to *UMOD* and *MUC1* diseases, but alike *REN* disease, renal involvement in HNF1B is not restricted to adulthood)

Renal imaging in *HNF1B* adult patients

Renal imaging (24/27 individuals) demonstrates extreme heterogeneity and escapes easy classification

Faguer S et al, Kidney Int 2011, 80, 7:768-76

Kidney size	at last FU
Normal	13 (61%),
Small	7 (30%)
bilateral	5
unilateral	2
Massively enlarged	2 (9%)

A cystic disease? Not a universal finding - possible overlap

Normal kidney 12% normal size and shape, no cyst

Renal cysts 62%, the majority with few (≤ 5) cortical or medullary cysts per kidney

Solitary kidney 21%

Diverse abnormalities 16% (nephrocalcinosis, kidney stone, hydronephrosis or hydroureter, and

vesicoureteric reflux)

9 patients (38%) had no detectable renal cyst between age 16 and 48 in 6 cystic pts with sequential imaging, no progressive increase of cysts number

To summarize renal imaging in young adults with HNF1B disease

- ≈ 60% have normal sized kidneys with regular shape,
 - ≈ 60% harbor a small number of bilateral renal cysts
- Imaging studies is not a diagnostic clue for HNF1B disease but is mandatory to rule out
 - ADPKD/ARPKD
 - obstructive uropathy (irregular shape)

Additional imaging studies at older age would be useful

Renal phenotype in children with *HNF1b* disease

Bilateral disease	76%
Large K, echogenic, no cyst	43%
Large K, echogenic, with cysts	24%
Hydronephrosis	14%
Jnilateral MCKD	19%

≈5%

< 5%

Single kidney

Normal US

Clinic findings at last FU			
	ser	ies	
	Adalat	Heidet	
N.	21	75	
Age	8.0 yr	8.5 yr	
Early gout	?	5%	
eGFR	63 (8-113)	?	
> 80		68%	
CKD stage 5	2 (21%)	?	

ESRD

¹Heidet & Decramer, CJASN 2010, 5:1079 ²Adalat S, JASN 2009, 20:1123

Renal course in childhood: data from 43 individuals - no sequential study

Series	Toulouse ¹	France ²
N.	18	25
Age at diagnosis	Antenatally	0,2
Median FU (years)	6	2,5
		,
GFR at last FU		
> 80	<u> </u>	14 (56%)
> 70	7 (39%)	- (· · · · ·)
40-80		10 (40%)
40-70	8 (45%)	<u>-</u>
< 40	2 (10%)	1 (4%)
	_ (10,0)	1 (1/0)
ESRD	1 (5%)	0

However, some aspects are disputable for typical TKD

- 1. Small sized kidneys is not a universal finding
- 2. Renal pathology is equivocal in HNF1B-disease
- 3. Unexplained acute kidney deterioration may occur (3/27, 11%)
- 4. (in contrast to *UMOD* and *MUC1* diseases, but alike *REN* disease, renal involvement in HNF1B is not restricted to adulthood)

Renal pathology: is HNF1B-disease really a tubulointerstitial nephritis?

- 1. Very few data
 - Practical reasons: small or cystic kidneys = risk of complication
 - So far, diagnostic value not established
- ≈ 20 individual reports in the literature, mostly in children (or fetus)
 - Glomerulocystic disease (n=6)
 - Oligomeganephronia (n=3)
 - Cystic renal dysplasia (n=2)
- 3. Tubulointerstitial findings
 - No specific assessment
 - Neither TBM lamelation, nor increased width
 - No specific study of HNF1B by IHC

Madariaga, CJASN, 2013

Pathological findings on kidney biopsy in 6 adults with HNF-1B mutation Bellanné, Chauveau et al., Ann Intern Med 2004

- Enlarged glomeruli 4/6
- Glomerular cysts 2/6
- Oligomeganephronia 1/6

None is specific

- Interstitial fibrosis 6/6
- Diabetic GN 0/6

As compared to *UMOD* nephropathy

- Due to scarce data, renal pathology is still of limited value to diagnose HNF1B-related disease
- Whether kidney biopsy should be routinely performed in adults with suspected HNF1B-related disease is not yet clear
- We need to better delineate the pathological characteristics, and to develop biomarkers that could help in establishing the diagnosis of HNF1-related kidney disease, without genetic testing

What may raise clinical suspicion of HNF1B disease in patients with renal presentation?

1. Extrarenal findings

2. Family history

Extrarenal findings

- 1. No large cohort, and few data on natural history
- 2. Target organs
- Pancreas
- Liver:
 - fluctuating liver tests in 40-50% of adults liver biopsy almost normal long term prognosis unknown (severe worsening post kidney tranplant)
 - neonatal jaundice¹⁻² with reduction of intrahepatic bile ducts
- Genital tract malformations (impaired fertility)
 - Males: epididimes cysts or bilateral absence of vas deferens
 - Females: bicornual uterus, hemiuterus, or uterus and upper vagina aplasia
- Brain: intellectual impairment with autistic traits³
 - Not well established in the spectrum of the disease
 - Only in patients with large deletion of the gene

Extrarenal findings

- Pancreas
 - Diabetes mellitus (MODY5)
 - β -cell dysfunction and insulin resistance
 - Typically non-obese patients at a median age of 20-30 years, up to >70 years,
 - Clinically overt or detected by screening, or NODAT¹
 - Course debated
 - exhibits a slowly progressive course with late requirement for insulin therapy²
 - or poor response to sulphonylurea³
 - (ketoacidosis may occur, in adult⁴ or even in teenager²)
 - Pancreas atrophy is detected in almost half the adult patients (CT) pancreas exocrine failure should be routinely detected at diagnosis (low
 faecal elastase)

²Bellanné, Ann Intern Med 2004 ³ Pearson Diabetes Care 2004 ⁴ Faquer S, Kidney Int 2011

What may raise clinical suspicion of HNF1B disease in patients with renal presentation?

- 1. Extrarenal findings
- 2. Family history with AD

However

- In all series, 50-60% of cases are found to have *de novo* mutation
- In families with evidence for AD inheritance, wide phenotypic variability¹
 - Phenocopies can be detected by family screening
- Mosaicism² (rare)

¹review in Chauveau Nephrol Therap, 2012 ³Yorifuji, J ClinEndocr Metab 2004

Thus, given

- the lack of pathognomonic characteristics
- -and the wide overlap with other conditions,

a genetic test is mandatory to diagnose HNF1B disease

Mutations in *HNF1b*-related disease

Gene located on 17q12

Adapted from Heidet L et al.

CJASN 2010;5:1079-1090

- Genetic changes
 - 50% point mutations (> 50 reported), (missense, false-sense, splice-site mutation, or indel) are mostly private and located in the
 - DNA-binding domain (clusters in exons 2 and 4)
 - 50% micro-chromosomal rearrangement mostly large recurrent deletion of 1.2–1.5Mb rarely one single exon
 - very low risk of mosaicism
- No genotype-phenotype correlation
- Disease mechanism = haploinsufficiency

Genetic screening for *HNF1B* mutation current approach

1)Large deletion?

2)If not, sequencing for point mutation

(Much easier than ADPKD or Alport)

Cost ≈ 380-780 euros in France

How to improve pre-genetic screening? The HNF1B score

Characteristics	Item	Value
Family history		+2
Antenatal renal abnormalities	Uni/bilateral abnormality	+2
	by renal echography	
Kidneys and urinary tract		
Left kidney	Hyperechogenicity	+4
	Renal cysts	+4
	Hypoplasia	+2
	Multicystic and dysplastic kidney	+2
	Urinary tract malformation	+1
	Solitary kidney	+1
Right kidney	Hyperechogenicity	+4
	Renal cysts	+4
	Hypoplasia	+2
	Multicystic and dysplastic kidney	+2
	Urinary tract malformation	+1
	Solitary kidney	+1
Electrolyte or uric acid disorders	Low serum Mg ²⁺ (<0.7 mmol/l)	+2
	Low serum K ⁺ (<3.5 mmol/l)	+1
	Early-onset gout (>30 years of age)	+2
Pathological findings	Oligomeganephronia or	+1
	glomerular cysts	
Pancreas ^a	MODY or hypoplasia of tail and	+4
	neck of the pancreas or pancreatic	
	exocrine insufficiency	
Genital tract	Genital tract abnormality ^b	+4
Liver	Live test abnormalities of	+2
	unknown origin ^c	

http://www.kidney-international.org © 2014 International Society of Nephrology

The HNF1B score is a simple tool to select patients for HNF1B gene analysis

Stanislas Faguer^{1,2,3,4}, Nicolas Chassaing^{4,5}, Flavio Bandin², Cathie Prouheze², Amaud Garnier⁶, Audrey Casemayou^{2,3}, Antoine Huart¹, Joost P. Schanstra^{3,4}, Patrick Calvas^{4,5}, Stéphane Decramer^{2,3,4,6,7} and Dominique Chauveau^{1,2,3,4,7}

Performance of the HNF1B score : ROC curve analysis (433-individual cohort including 56 HNF1B cases)

Figure 2 Distribution of patients (%) who would be proposed for HNF1B screening according to the HNF1B score (≥8) and to age at genetic screening. X axis shows age ranges (years), and y axis shows percentage of patients with HNF1B score < or ≥8.

http://www.kidney-international.org clinical investigatio

© 2014 International Society of Nephrology

The HNF1B score is a simple tool to select patients fo HNF1B gene analysis

Stanislas Faguer^{1,2,3,4}, Nicolas Chassaing^{4,5}, Flavio Bandin², Cathie Prouheze², Amaud Garnier⁶, Audrey Casemayou^{2,3}, Antoine Huart¹, Joost P. Schanstra^{3,4}, Patrick Calvas^{4,5}, Stéphane Decramer^{2,3,4,5} and Dominique Chauveau^{1,2,3,4,7}

Table 2 | HNF1B score

Characteristics	Item	Value
Family history		+2
Antenatal renal abnormalities	Uni/bilateral abnormality	+2
	by renal echography	
Kidneys and urinary tract		
Left kidney	Hyperechogenicity	+4
	Renal cysts	+4
	Hypoplasia	+2
	Multicystic and dysplastic kidney	+2
	Urinary tract malformation	+1
	Solitary kidney	+1
Right kidney	Hyperechogenicity	+4
	Renal cysts	+4
	Hypoplasia	+2
	Multicystic and dysplastic kidney	+2
	Urinary tract malformation	+1
	Solitary kidney	+1
Electrolyte or uric acid disorders	Low serum Mg ²⁺ (<0.7 mmol/l)	+2
	Low serum K ⁺ (<3.5 mmol/l)	+1
	Early-onset gout (>30 years of age)	+2
Pathological findings	Oligomeganephronia or	+1
	glomerular cysts	
Pancreas ^a	MODY or hypoplasia of tail and	+4
	neck of the pancreas or pancreatic	
	exocrine insufficiency	
Genital tract	Genital tract abnormality ^b	+4
Liver	Live test abnormalities of unknown origin ^c	+2

Figure 2 Distribution of patients (%) who would be proposed for HNF1B screening according to the HNF1B score (\geqslant 8) and to age at genetic screening. X axis shows age ranges (years), and y axis shows percentage of patients with HNF1B score < or \geqslant 8.

Figure 1 | Receiver operating characteristics (ROC) curve of the HNF1B score in a large cohort with HNF1B known status (N = 433), showing the accuracy of the HNF1B score in

When to screen for HNF1B in patients with renal presentation?

Specific management in established HNF1B disease in adults

Kidney

- At presentation : Mg, K, S. creatinine & CT-scan (or MRI)
- Yearly: Mg, K, S. creatinine no imaging in the absence of clinical symptom
- If hypoMg/hypoK: treat only if symptomatic
- Avoid ACE and ARB
- ?Screening for chromophobe renal cell carcinoma (2 case reports 37 and 54 years/ bi-allelic invalidation, in addition to germline mutation)

Pancreas

- At presentation : ?diabetes fecal elastase
- Yearly: diabetes FU fecal elastase if symptom

Liver

- At presentation and yearly: liver blood tests
- Genital tract : only if symptomatic (?)
- Genetic counselling

Rebouissou S et al. Hum. Mol. Genet. 2005;14:603-614

Kidney and combined kidney-pancreas transplantation in HNF-1beta individuals

follow-up in 16 patients from 7 medical Centers

Faguer et al, submitted

- 16 patients (8F, 8M) 7/16 (44%) large deletion
- Prior Tx :
 - DM in 6/16 (37%), 5 IDDM, mean age at diagnosis 21
 - Liver tests abnormalities in 7 (44%)
 - Exocrine pancreatic failure in 1
- At Tx
 - median age = 27 (5- $\frac{5}{3}$)
 - 14 SKT and 2KPT
- FU after 14 SKT
 - Median duration = 69±57 months (4-180)
 - Kidney :
 - Early acute oxalate nephritis n=1
 - Chronic rejection and Re-SKT n=3
 - Severe worsening or de novo abnormal liver tests: 7/14 (50%) no cirrhosis
 - de novo post-transplant DM : 6/10 (60%), ≈ 3 months post-SKT

Borlak J, Niehof M. HNF4alpha and HNF1alpha dysfunction as a molecular rational for cyclosporine induced posttransplantation diabetes mellitus. *PLoS One* 2009

- Cytoplasmic calcineurin regulates NFAT (nuclear factor of activated T-cells)
- NFAT are a family of transcription factors expressed in renal, pancreas and liver epithelial cells during development

Hypothesis: could calcineurin inhibitors modify HNF1B expression in epithelial cells?

Lessons from SKT and KPT in HNF-1beta individuals : a plead for dedicated management

- CNI down-regulate HNF1-beta transcriptional activity: HNF1B patients
 are therefore close to bi-allelic inactivation
- Individualized management of ESRF
 - If IDDM or NIDM, consider KTP

Poitou, Transplant Int 2012 and personal experience

- In the absence of IDDM/NIDM
 - Test for exocrine pancreatic failure (fecal elastase), and add pancreas enzyme supplementation
 - Inform of the high risk for de novo PTDM
 - Minimize CNI exposure and consider prompt withdrawal of steroids

Contributors

- Toulouse
 - Stanislas Faguer, Stéphane Decramer, Nicolas Chassaing, Patrick Calvas & Dominique Chauveau
- Limoges
- Marie Essig,
- Paris
 JP Grünfeld, J Timsit, Christine Bellanne-Chantelot & Pierre Ronco
- Clermont-Ferrand
 Lucie Bessenay
- Bruxelles-Zürich
 Jean-Phillipe Lengelé, Karine Dahan, Y Pirson & Olivier Devuyst