

FGF-23 and vascular calcification: is it set in stone?

Sydney C.W. Tang

Division of Nephrology

The University of Hong Kong

Outline

- The cardiorenal connection
 - Epidemiology
 - Clinical observations
- FGF23 and vascular calcification
 Mixed data: for and against
- Is FGF23 a useful biomarker afterall?
- The way forward

Shennong is thought to have lived between the 27th and 25th centuries BC

"The heart and the kidneys were closely related"

Ailment: "non-coordination between the heart and the kidney" or "心腎不交"

Causes of death in ESRD patients, 2013

Data Source: Reference Table H12. Abbreviations: AHD, atherosclerotic heart disease; AMI, acute myocardial infarction; CHF, congestive heart failure; CVA, cerebrovascular accident.

USRDS 2016

Mortality on RRT - Percentage by Causes of Death 1999-2011

Ho YW, et al. HK J Nephrol 2013

HK Renal Registry, HACRC

Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis

Chronic Kidney Disease Prognosis Consortium*

Meta-analysis of 1.2 M subjects from 21 studies

Lancet 2010; 375: 2073-81

thelancet.com Vol 388 July 16, 2016

CV-renal connection

Pleiotropic endocrine and auto-/paracrine functions of FGF23

R.G. Erben / Molecular and Cellular Endocrinology 432 (2016) 56-65

Endocrine and auto-/paracrine functions of soluble Klotho

FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages

L. Desjardins • S. Liabeuf • C. Renard • A. Lenglet • H.-D. Lemke • G. Choukroun • T. B. Drueke • Z. A. Massy • on behalf of the European Uremic Toxin (EUTox) Work Group

k Group		\sim		
	Total n=142	Plasma FGF23		p value
		≤33.5 pg/ml (<i>n</i> =71)	>33.5 pg/ml (n=71)	
Age, years	67±12	66±11	68±13	0.358
Male gender, n (%)	86 (60.6)	44 (62)	42 (59)	0.734
CKD stage, n (%)				< 0.001
2	12 (8.5)	12 (7)	0 (0)	
3	37 (26.1)	25 (35)	12 (17)	
4	37 (26.1)	26 (37)	11 (15)	
5	10 (7)	3 (4)	7 (10)	
5D	46 (32.4)	5 (7)	41 (58)	
Aortic calcification score (%)	3±3.0 (1.8; 0.7-4.3)	2.3±2.6 (3.1; 1.1-4.5)	3.6±3.2 (1.2; 0.5-2.5)	0.002
Coronary calcification score (AUs) ^a	585±1,224 (4.5; 0.2-10)	406±699 (6.0; 1.0-6.0)	804±1,636 (3.0; 0-8.0)	0.027

FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages

L. Desjardins • S. Liabeuf • C. Renard • A. Lenglet • H.-D. Lemke • G. Choukroun • T. B. Drueke • Z. A. Massy • on behalf of the European Uremic Toxin (EUTox) Work Group

Table	5	Multiva	riate	linear	regressio	n: variat	oles in	ıdep	ende	ntl	
associa	ted	with ao	rtic ca	lcificati	ion score	(log-nom	nalized) (n	=142	2)	

	β (95% CI)	p value
Age	0.057 (0.038-0.076)	< 0.001
FGF23	0.525 (0.140-0.909)	0.008

Variables entered in the model: age, FGF23, bone mineral density, and chronic kidney disease stage; R^2 for the model=0.315

CI confidence interval, FGF23 fibroblast growth factor 23

Vascular calcification

- is highly prevalent in CKD / ESRD
- independently predicts future CV events / mortality
- Calcification occurs in both the intimal and medial layers of vessels, but medial calcification is the major form in ESRD patients.
- Medial calcification increases arterial stiffness and pulse pressure, induces LVH, reduces perfusion of the coronary arteries, and ultimately promotes increased CV mortality.

Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease

Kidney International (2016) 90, 648-657

Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function

Nasser A. Dhayat^{1,10,11}, Daniel Ackermann^{1,11}, Menno Pruijm², Belen Ponte³, Georg Ehret⁴, Idris Guessous^{5,6}, Alexander Benedikt Leichtle^{7,11}, Fred Paccaud⁶, Markus Mohaupt¹, Georg-Martin Fiedler^{7,11}, Olivier Devuyst⁸, Antoinette Pechère-Bertschi⁹, Michel Burnier^{2,11}, Pierre-Yves Martin³, Murielle Bochud⁶, Bruno Vogt^{1,11} and Daniel G. Fuster^{1,10,11}

FGF23 was negatively associated with 1,25-dihydroxyvitamin D3 but not urinary absolute or fractional phosphate excretion

			Mo	del 1			Мо	del 2			M	odel 3			Ν	Nodel 4	
	-				Р				Р				Р				Р
Predictor variable		N	β	95% CI	value	N	β	95% Cl	value	N	β	95% CI	value	N	β	95% CI	value
Blood values																	
PTH, pg/ml	Linear	1007	0.00277	0.00059- 0.00499	<0.05	999	0.00082	-0.00155 to 0.00322	0.50	912	0.00008	-0.00239 to 0.00259	0.95	918	0.00089	-0.00153 to 0.00335	0.47
25-OH-vitamin	Linear	1006	-0.00204	-0.00353 to	< 0.01	998	-0.00200	-0.00351 to	< 0.05	911	-0.00148	-0.00288 to	< 0.05	917	-0.00164	-0.00305 to	< 0.05
D ₃ , nmol/l				-0.00052				-0.00044				-0.00004				-0.00018	
	Quadratic		0.00003		0.084		0.00003	0-0.00007	0.085								
1,25-diOH	Linear	941	-0.00312	-0.00408 to	< 0.001	934	-0.00297	-0.00397 to	<0.001	866	-0.00253	-0.00352 to	<0.001	858	-0.00310	-0.00413 to	<0.001
vitamin D ₃ , pmol/l				-0.00218				-0.002				-0.0016				-0.00209	
	Quadratic		0.00002	0-0.00004	< 0.05		0.00002	0-0.00004	< 0.05						0.00002	0.00001-	< 0.05
																0.00004	
Phosphate,	Linear	1001	0.32701	0.15639-	< 0.001	1000	0.33620	0.15815-	<0.001	914	0.31000	0.12398-	<0.01	919	0.35740	0.17323-	<0.001
mmol/l				0.50727				0.52269				0.50134				0.55234	
Calcium	Linear	1002	0.24939	-0.0723-	0.14	1001	0.18370	-0.1372-	0.28	914	0.07364	-0.26377-	0.68	920	0.14470	-0.18285-	0.40
corrected,				0.60622				0.55068				0.45544				0.52334	
mmol/l																	
Urine values																	
Phosphaturia,	Linear	976	-0.00218	-0.00518 to	0.16	968	0.00165	-0.00178 to	0.35	882	0.00269	-0.00087 to	0.14	911	0.00406	-0.00034 to	0.07
mmol/24 hr				0.00088				0.00517				0.00634				0.00836	
Fractional	Linear	968	-0.00067	-0.00578 to	0.79	967	-0.00235	-0.00798 to	0.40	882	-0.00357	-0.00939 to	0.22	909	-0.00295	-0.00877 to	0.31
excretion of				0.00407				0.003				0.00205				0.00265	
phosphate, %																	

The main demonstrable effect of FGF23 in the setting of preserved renal function is suppression of 1,25-dihydroxyvitamin D3 rather than stimulation of renal phosphate excretion.

Higher FGF23 concentrations associate with LV systolic dysfunction in dialysis patients

Association of Fibroblast Growth Factor 23 With Atrial Fibrillation in Chronic Kidney Disease, From the Chronic Renal Insufficiency Cohort Study

Rupal Mehta, MD; Xuan Cai, MS; Jungwha Lee, PhD; Julia J. Scialla, MD, MHS; Nisha Bansal, MD, MAS; James H. Sondheimer, MD; Jing Chen, MD, MMSc, MSc; L. Lee Hamm, MD; Ana C. Ricardo, MD, MPH, MS; Sankar D. Navaneethan, MD, MPH; Rajat Deo, MD; Mahboob Rahman, MD; Harold I. Feldman, MD, MSCE; Alan S. Go, MD; Tamara Isakova, MD, MMSc; Myles Wolf, MD, MMSc; for the Chronic Renal Insufficiency Cohort (CRIC) Study Investigators

Table 1. Baseline Characteristics According to Atrial Fibrillation Prevalence

. /	Prevalent Atrial Fibrillation	No Prevalent Atrial Fibrillation	
Variable	(n = 660)	(n = 3216)	P Value
Age, mean (SD), y	60.9 (9.3)	57.0 (11.2)	<.001
Female sex, No. (%)	306 (46.4)	1430 (44.5)	.37
Heart failure, No. (%)	183 (27.7)	194 (6.0)	<.001
Stroke, No. (%)	98 (14.9)	287 (8.9)	<.001
Cardiovascular disease, No. (%)	388 (58.8)	909 (28.3)	<.001
Ratio (IQR) of urinary albumin to creatinine, mg/g	44.4 (9.3-382.2)	53.3 (8.4-479.7)	.11
Estimated glomerular filtration rate, mean (SD), mL/min/1.73 m ²	42.2 (14.7)	44.7 (15.1)	<.001
		52.2 (24.0.00.0)	. 001
Intact parathyroid hormone level, median (IQR), pg/mL	61.5 (38.9-97.0)	52.3 (34.0-88.0)	<.001
FGF23 level, median (IQR), RU/mL	181.2 (113.3-307.6)	138.6 (93.9-227.4)	<.001

			FGF23 Quartile, Rl	J/mL			
Variable	Cases/Total No.	Per 1-U Increase in Natural Log FGF23	Quartile 1 (≤95.9)	Quartile 2 (96.0-145.6)	Quartile 3 (145.7-239.2)	Quartile 4 (>239.2)	P for Trend
Prevalence, No./total No. (%)	660	660/3876 (17.0)	117/969 (12.1)	124/969 (12.8)	185/969 (19.1)	234/969 (24.1)	NA
Odds ratio (95% CI)							
Unadjusted	660/3876	1.51 (1.36-1.68)	1 [Reference]	1.07 (0.82-1.40)	1.72 (1.34-2.21)	2.32 (1.82-2.96)	<.001
Plus demographic factors ^b	660/3876	1.53 (1.37-1.71)	1 [Reference]	1.03 (0.78-1.35)	1.66 (1.28-2.14)	2.30 (1.80-2.95)	<.001
Plus cardiovascular risk factors ^c	655/3847	1.36 (1.21-1.54)	1 [Reference]	0.95 (0.71-1.25)	1.44 (1.10-1.88)	1.83 (1.40-2.40)	<.001
Plus CKD-specific factors ^d	655/3847	1.44 (1.27-1.64)	1 [Reference]	1.00 (0.75-1.33)	1.62 (1.22-2.15)	2.18 (1.62-2.93)	<.001
Plus markers of mineral metabolism ^e	633/3729	1.46 (1.27-1.67)	1 [Reference]	1.04 (0.78-1.39)	1.63 (1.22-2.19)	2.30 (1.69-3.13)	<.001

Table 2. Fibroblast Growth Factor 23 (FGF23) and Prevalent Atrial Fibrillation^a

Abbreviations: CKD, chronic kidney disease; NA, not applicable; RU, reference units.

^a Continuous results are reported as odds ratios per 1-U increase in natural log-transformed FGF23.

^bAdjusts for age, sex, and race/ethnicity.

^c Adjusts for factors in model 1 and for cardiovascular disease, systolic blood

pressure, diabetes, smoking, and diuretic use.

^d Adjusts for factors in model 2 and for estimated glomerular filtration rate and ratio of urinary albumin to creatinine.

^e Full multivariable model adjusts for factors in model 3 and for levels of calcium, phosphate, and parathyroid hormone.

Incidence of AF: Median follow-up of 7.6 years

Table 4. Incidence of Atrial Fibrillation and Its Association With Fibroblast Growth Factor 23 (FGF23)^a

		Per 1-U Increase	r 1-U Increase FGF23 Quartile, RU/mL				
Variable	Events/Total No.	in Natural Log FGF23	Quartile 1 (≤93.9)	Quartile 2 (94.0-138.6)	Quartile 3 (138.7-227.4)	Quartile 4 (>227.4)	P for Trend
Incidence rate (95% CI), events per 1000 person-years	247/3216	11.9 (10.4-13.4)	7.5 (5.4-10.1)	9.6 (7.1-12.5)	14.2 (11.1-17.8)	17.2 (13.7-21.4)	<.001
Hazard ratio (95% CI)							
Unadjusted	247/3216	1.57 (1.35-1.83)	1 [Reference]	1.28 (0.86-1.93)	1.93 (1.32-2.82)	2.40 (1.65-3.49)	<.001
Plus demographic factors ^b	247/3216	1.78 (1.51-2.11)	1 [Reference]	1.19 (0.79-1.79)	1.90 (1.29-2.79)	2.66 (1.81-3.92)	<.001
Plus cardiovascular risk factors ^c	247/3192	1.61 (1.35-1.92)	1 [Reference]	1.07 (0.71-1.62)	1.60 (1.08-2.37)	2.06 (1.38-3.09)	<.001
Plus CKD-specific factors ^d	247/3192	1.48 (1.22-1.81)	1 [Reference]	1.00 (0.66-1.51)	1.37 (0.91-2.07)	1.64 (1.05-2.56)	.01
Plus markers of mineral metabolism ^e	237/3096	1.47 (1.20-1.80)	1 [Reference]	1.00 (0.65-1.54)	1.34 (0.87-2.05)	1.59 (1.00-2.53)	.02

Abbreviations: CKD, chronic kidney disease; RU, reference units.

^a Continuous results are reported as hazard ratios per 1-U increase in natural log-transformed FGF23.

^bAdjusts for age, sex, and race/ethnicity.

^c Adjusts for factors in model 1 and for cardiovascular disease, systolic blood

pressure, diabetes, smoking, and diuretic use.

^d Adjusts for factors in model 2 and for estimated glomerular filtration rate and ratio of urinary albumin to creatinine.

^e Full multivariable model adjusts for factors in model 3 and for levels of calcium, phosphate, and parathyroid hormone.

Fibroblast Growth Factor-23 and Cardiovascular Disease in the General Population

The Multi-Ethnic Study of Atherosclerosis

Bryan Kestenbaum, MD, MS; Michael C. Sachs, PhD; Andy N. Hoofnagle, MD, PhD; David S. Siscovick, MD, MPH; Joachim H. Ix, MD, MAS; Cassianne Robinson-Cohen, PhD; Joao A.C. Lima, MD; Joseph F. Polak, MD, MPH; Marc Blondon, MD; John Ruzinski, BS; Denise Rock, BS; Ian H. de Boer, MD, MS

	Serum	Fibroblast Growth Fact	or-23 Concentration, p	g/mL
	<30.5	30.5–37.7	37.7-46.4	46.4-223
No. of subjects	1636	1639	1634	1637
Age, y	60.8 (10.2)	61.8 (10.0)	62.3 (10.3)	63.6 (10.3)
Male	678 (41.4)	786 (48.0)	784 (48.0)	812 (49.6)
Race				
White	525 (32.1)	621 (37.9)	656 (40.1)	741 (45.3)
Chinese	191 (11.7)	214 (13.1)	194 (11.9)	195 (11.9)
Black	485 (29.6)	448 (27.3)	429 (26.3)	415 (25.4)
Hispanic	435 (26.6)	356 (21.7)	355 (21.7)	286 (17.5)
Diabetes mellitus	203 (12.4)	202 (12.3)	175 (10.7)	231 (14.1)
Estimated GFR, mL/min per 1.73 m ² †	90.0 (20.2)	90 (22.1)	81.5 (23.3)	73.7 (27.2)
Estimated GFR \leq 60 mL/min per 1.73 m ²	160 (9.9)	202 (12.4)	234 (14.4)	421 (25.9)
Urine albumin-to-creatinine ratio, mg/g†	6.7 (6.7)	6.7 (6.8)	6.7 (7.6)	8.2 (10.5)

Table 1. Baseline Characteristics by Fibroblast Growth Factor-23 Quartile

Circ Heart Fail

May 2014

Associations of FGF-23 With Subclinical Cardiovascular Disease:

	Left Ventricular	Mass (n=4832)	Mean Differences in L	eft Ventricular Mass, g
FGF-23, pg/mL	LVH, %	Mean, g (SD)	Model 1	Model 2
<30.5	10.5	139.5 (37.8)	0 (reference)	0 (reference)
30.5–37.7	8.9	144.6 (38.6)	0.38 (-1.65 to 2.40)	1.02 (-0.90 to 2.93)
37.7–46.4	9.5	146.7 (39.7)	0.87 (-1.21 to 2.95)	1.46 (-0.49 to 3.42)
46.4–223	11.7	149.9 (41.1)	2.74 (0.54 to 4.94)	2.44 (0.37 to 4.51)
P for trend			0.014 0.020	
	CA	C (n=6547)	Odds Ratios	for Higher CAC Score
FGF-23, pg/mL	Prevalence, %	Median Score	* Model 1	Model 2
<30.5	43.1	74.8 (223.4)	1.0 (reference)	1.0 (reference)
30.5–37.7	48.2	77.6 (271.9)	1.09 (0.95–1.25)	1.12 (0.97-1.29)
37.7–46.4	49.9	88.1 (283.7)	1.08 (0.94–1.24)	1.09 (0.94-1.26)
46.4–223	57.3	106.3 (334.8)	1.32 (1.15–1.52)	1.26 (1.09-1.46)
<i>P</i> for trend			<0.001	0.005
	Carotid IMT	(n=6470)	Mean Differences in	Carotid IMT, µm
FGF-23, pg/mL	Any Plaque, %*	Mean, µm (SD)	Model 1	Model 2
<30.5	37.6	852.1 (181.1)	0 (reference)	0 (reference)
30.5–37.7	40.3	860.5 (181.7)	-4.06 (-15.21 to 7.09)	0.21 (-10.69 to 11.1)
37.7–46.4	40.9	866.0 (197.7)	-4.28 (-15.68 to 7.12)	-1.79 (-13.04 to 9.46)
46.4–223	46.2	896.7 (210.6)	13.09 (0.89 to 25.28)	11.77 (-0.34 to 23.88)
P for trend			0.045	0.090

LV mass

Circ Heart Fail

May 2014

Associations of FGF-23 With Incident Cardiovascular Events

Cumulative incidences of CV events by serum FGF-23 concentration

Circ Heart Fail May 2014

Plasma FGF23 and Calcified Atherosclerotic Plaque in African Americans with Type 2 Diabetes Mellitus

Barry I. Freedman^a Jasmin Divers^b Gregory B. Russell^b Nicholette D. Palmer^c Donald W. Bowden^c J. Jeffrey Carr^f Lynne E. Wagenknecht^b R. Caresse Hightower^d Jianzhao Xu^c Susan Carrie Smith^a Carl D. Langefeld^b Keith A. Hruska^g Thomas C. Register^e

Baseline	Male (n = 236)	Female (n = 309)	All (n = 545)	p value
Age, years Age at diabetes onset, years Diabetes duration, years BMI, kg/m ² SBP, mm Hg eGFR 90.9 (22.1) ml/min/1.73 m2 UACR 151 (588) mg/g, median 13 mg/g	56.0 (9.8) 45.5 (10.9) 10.5 (8.7) 32.5 (7.4) 132.0 (18.1)	55.4 (9.5) 45.2 (10.2) 10.2 (7.8) 37.4 (8.9) 133.5 (19.9)	55.6 (9.6) 45.3 (10.5) 10.3 (8.2) 35.3 (8.6) 132.8 (19.2)	0.46 0.70 0.71 <0.0001 0.36
Follow-up (mean 5.1 years)	Male (n = 139)	Female (n = 143)	All (n = 282)	p value
Age, years Age at diabetes onset, years Diabetes duration, years BMI, kg/m ² SBP, mm Hg	59.7 (9.3) 44.7 (9.3) 15.1 (8.1) 32.6 (6.8) 129.7 (18.0)	60.4 (8.5) 44.8 (9.6) 15.6 (6.6) 37.2 (8.0) 132.6 (17.4)	60.1 (8.9) 44.8 (9.5) 15.3 (7.4) 34.9 (7.8) 131.2 (17.7)	0.52 0.92 0.52 <0.0001 0.17

Am J Nephrol 2015;42:391-401

Cross-sectional associations between plasma FGF23 and clinical variables

Outcome + sequentially-adjusted models	Estimate	SE	p value
Estimated GFR			
Unadjusted	-8.36	1.34	< 0.0001
Age, sex, ancestry, BMI, T2D duration, smoking	-8.27	1.28	< 0.0001
Above + HbA1c, SBP, ACEi/ARB medicines	-8.50	1.30	< 0.0001
log (UACR + 1)			
Unadjusted	0.38	0.11	0.0007
Age, sex, ancestry, BMI, T2D duration, smoking	0.45	0.11	0.0001
Above + HbA1c, SBP, ACEi/ARB medicines	0.52	0.11	< 0.0001
Above + eGFR	0.49	0.11	< 0.0001
log (aorta CP + 1)			
Unadjusted	0.49	0.22	0.027
Age, sex, ancestry, BMI, T2D duration, smoking	0.24	0.18	0.17
Above + HbA1c, SBP, statin medicines	0.28	0.18	0.12
Above + calcium supplements, eGFR	0.20	0.19	0.29
log (CAC + 1)			
Unadjusted	0.45	0.19	0.015
Age, sex, ancestry, BMI, T2D duration, smoking	0.42	0.17	0.015
Above + HbA1c, SBP, statin medicines	0.48	0.17	0.006
Above + calcium supplements, eGFR	0.50	0.18	0.005

FGF-23 Associates with Death, Cardiovascular Events, and Initiation of Chronic Dialysis

Jessica Kendrick,* Alfred K. Cheung,^{†‡} James S. Kaufman,[§] Tom Greene,[¶] William L. Roberts,** Gerard Smits,* Michel Chonchol,* and the HOST Investigators

initiation of chronic dialysis re FGF23 quartiles

Madala	Q1	Q2	Q3	Q4
wodels	≤ 216 RU/ml	217–380 RU/ml	381–945 RU/ml	>946 RU/ml
Model 1	1.00	1.70 (1.37-2.10)	2.92 (2.36-3.61)	4.43 (3.57-5.49)
Model 2	1.00	1.26 (1.01–1.57)	1.66 (1.31-2.11)	2.32 (1.80-2.98)
Model 3	1.00	1.26 (1.01–1.58)	1.65 (1.30–2.10)	2.30 (1.78–2.96)

Fibroblast growth factor 23 is not associated with and does not induce arterial calcification

Julia J. Scialla^{1,12}, Wei Ling Lau^{2,12}, Muredach P. Reilly³, Tamara Isakova¹, Hsueh-Ying Yang⁴, Matthew H. Crouthamel⁴, Nicholas W. Chavkin⁴, Mahboob Rahman⁵, Patricia Wahl¹, Ansel P. Amaral¹, Takayuki Hamano⁶, Stephen R. Master⁷, Lisa Nessel⁶, Boyang Chai⁶, Dawei Xie⁶, Radhakrishna R. Kallem³, Jing Chen⁸, James P. Lash⁹, John W. Kusek¹⁰, Matthew J. Budoff¹¹, Cecilia M. Giachelli⁴ and Myles Wolf¹ for the Chronic Renal Insufficiency Cohort Study Investigators

Table 3 | Adjusted association of fibroblast growth factor 23 (FGF23) and serum phosphate with categories of coronary artery calcium (CAC) and thoracic aorta calcium (TAC) scores using ordinal logistic regression (n = 1384)

Model ^a	Odds ratio for 1-unit increase in CAC category ^b	P-value	Odds ratio for 1-unit increase in TAC category ^b	P-value
In EGE23 (ner s.d. ^c)				
 Phosphate 	1.05 (0.93-1.20)	0.43	1.07 (0.94-1.21)	0.33
+ Phosphate	1.02 (0.90–1.16)	0.74	1.06 (0.93-1.21)	0.38
Phosphate (per				
s.d. ^c)				
— FGF23	1.29 (1.14–1.46)	< 0.01	1.12 (0.98–1.27)	0.10
+FGF23	1.29 (1.13-1.46)	< 0.01	1.11 (0.97-1.26)	0.13

Fibroblast growth factor 23 is not associated with and does not induce arterial calcification

Julia J. Scialla^{1,12}, Wei Ling Lau^{2,12}, Muredach P. Reilly³, Tamara Isakova¹, Hsueh-Ying Yang⁴, Matthew H. Crouthamel⁴, Nicholas W. Chavkin⁴, Mahboob Rahman⁵, Patricia Wahl¹, Ansel P. Amaral¹, Takayuki Hamano⁶, Stephen R. Master⁷, Lisa Nessel⁶, Boyang Chai⁶, Dawei Xie⁶, Radhakrishna R. Kallem³, Jing Chen⁸, James P. Lash⁹, John W. Kusek¹⁰, Matthew J. Budoff¹¹, Cecilia M. Giachelli⁴ and Myles Wolf¹ for the Chronic Renal Insufficiency Cohort Study Investigators

Vascular calcification in chronic kidney disease: are biomarkers useful for probing the pathobiology and the health risks of this process in the clinical scenario?

Sophie Liabeuf^{1,2}, Hirokazu Okazaki¹, Lucie Desjardins^{1,2}, Danilo Fliser³, David Goldsmith⁴, Adrian Covic⁵, Andrzej Wiecek⁶, Alberto Ortiz⁷, Alberto Martinez-Castelao⁸, Bengt Lindholm⁹, Gultekin Suleymanlar¹⁰, Francesca Mallamaci¹¹, Carmine Zoccali¹¹, Gerard London¹² and Ziad A. Massy^{1,13}

Lowering the load of PO4 to control FGF23

- Use of PO4 binders
- Limiting dietary phosphate / protein

Phosphorus Binders and Survival on Hemodialysis

Tamara Isakova,* Orlando M. Gutiérrez,[†] Yuchiao Chang,[‡] Anand Shah,* Hector Tamez,* Kelsey Smith,[†] Ravi Thadhani,* and Myles Wolf[†]

J Am Soc Nephrol 20: 388-396, 2009

JAm Soc Nephrol 23: 1407–1415, 2012. Effects of Phosphate Binders in Moderate CKD

Geoffrey A. Block,* David C. Wheeler,[†] Martha S. Persky,* Bryan Kestenbaum,[‡] Markus Ketteler,[§] David M. Spiegel,^{||} Matthew A. Allison,[¶] John Asplin,** Gerard Smits,* Andrew N. Hoofnagle,[‡] Laura Kooienga,* Ravi Thadhani,^{††} Michael Mannstadt,^{††} Myles Wolf,^{‡‡} and Glenn M. Chertow^{§§}

148 patients with eGFR=20–45 randomized to calcium acetate, lanthanum carbonate, sevelamer, or placebo. Primary endpoint was change in mean serum phosphorus from baseline to 9 months

Reduction serum P

Increase in CAC

No change in FGF23

Effects of Phosphate Binders in Moderate CKD

Geoffrey A. Block,* David C. Wheeler,[†] Martha S. Persky,* Bryan Kestenbaum,[‡] Markus Ketteler,[§] David M. Spiegel,^{||} Matthew A. Allison,[¶] John Asplin,** Gerard Smits,* Andrew N. Hoofnagle,[‡] Laura Kooienga,* Ravi Thadhani,^{††} Michael Mannstadt,^{††} Myles Wolf,^{‡‡} and Glenn M. Chertow^{§§}

Lowering serum P did not improve medium term outcome in predialysis CKD subjects with near-normal serum P; it increases vascular calcification rates

Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3–5: The Modification of Diet in Renal Disease Study

see commentary on page 21

Umut Selamet¹, Hocine Tighiouart², Mark J. Sarnak³, Gerald Beck⁴, Andrew S. Levey³, Geoffrey Block⁵ and Joachim H. Ix^{1,6,7}

795 MDRD study participants randomized to low or high PO4 diet

No Association of 24-h urine phosphate excretion with incident ESRD, CVD mortality, non-CVD mortality, and all cause mortality

24-H UPE range of quartiles (mg/day)	Q1 100–608	Q2 609–788	Q3 791–1008	Q4 1010–2211	Continuous (per higher SD)	<i>P</i> -value
ESRD						
Number of events/number at risk	145/198	153/200	144/199	147/198	589/795	
Event rate (per 100 PY)	9.62	8.97	9.06	8.58	9.04	
Model 1: HR (95% CI)	1.00 (Reference)	0.93 (0.74, 1.17)	0.91 (0.71, 1.16)	0.85 (0.65, 1.10)	0.93 (0.85, 1.02)	0.13
Model 2: HR (95% CI)	1.00 (Reference)	0.93 (0.73, 1.17)	1.03 (0.81, 1.32)	1.05 (0.80, 1.38)	1.02 (0.93, 1.13)	0.64
Model 3: HR (95% CI)	1.00 (Reference)	0.98 (0.77, 1.24)	1.03 (0.79, 1.33)	1.10 (0.82, 1.46)	1.04 (0.94, 1.15)	0.48
CVD mortality						
Number of events/number at risk	43/198	50/200	54/199	44/198	191/795	
Event rate (per 100 PY)	1.39	1.56	1.84	1.42	1.55	
Model 1: HR (95% CI)	1.00 (Reference)	1.03 (0.68, 1.57)	1.02 (0.67, 1.56)	0.80 (0.50, 1.27)	0.93 (0.79, 1.10)	0.40
Model 2: HR (95% CI)	1.00 (Reference)	1.08 (0.71, 1.65)	1.12 (0.73, 1.72)	0.94 (0.57, 1.53)	1.00 (0.84, 1.20)	0.99
Model 3: HR (95% CI)	1.00 (Reference)	1.12 (0.73, 1.72)	1.08 (0.69, 1.70)	0.93 (0.56, 1,56)	1.00 (0.82, 1.21)	0.97
All-cause mortality						
Number of events/number at risk	100/198	101/200	109/199	109/198	419/795	
Event rate (per 100 PY)	3.23	3.15	3.71	3.52	3.40	
Model 1: HR (95% CI)	1.00 (Reference)	0.97 (0.73, 1.29)	0.98 (0.74, 1.31)	0.98 (0.72, 1.33)	0.99 (0.89, 1.11)	0.90
Model 2: HR (95% CI)	1.00 (Reference)	1.01 (0.76, 1.35)	1.08 (0.81, 1.45)	1.16 (0.84, 1.61)	1.07 (0.95, 1.20)	0.26
Model 3: HR (95% CI)	1.00 (Reference)	1.00 (0.75, 1.33)	0.94 (0.69, 1.27)	1.02 (0.73, 1.44)	1.02 (0.90, 1.16)	0.76

Selamet et al. KI 2016

Dietary phosphorus restriction in predialysis chronic kidney disease: time for a cease-fire?

Dietary PO4 control may not be effective in improving clinical endpoints

Limitations of the MDRD posthoc analysis ((baseline P, low ACEi penetrance, drastic inc in P intake over time)

Need of further studies

When targeting dietary phosphate restriction, however, the focus should clearly be on phosphate additives and not on protein

The rise of FGF23: should insights from populationbased studies inform future clinical trials?

James B. Wetmore¹

The practicing clinician might wonder "does it matter to patient care whether the FGF23 level rises before PTH or the reverse?"

Interventions designed to slow the progression of CKD, such as those targeting FGF23, are unlikely to be undertaken on any widespread basis when the eGFR is well above 60 ml/min per 1.73 m2.

Practical implications: the earlier that the FGF23 level rises, the more pronounced is its rise, and the greater its demonstrable effects on other biological processes (e.g., on vitamin D metabolism), the stronger the rationale is for undertaking an intervention designed to lower FGF23 levels— such as the COMBINE study and large potential follow-up studies. Such studies take time, energy, and resources....

Phosphate Binding Therapy to Lower Serum Fibroblast-Growth-Factor-23 Concentrations in Chronic Kidney Disease: Rationale and Study Design of the Sevelamer on FGF23 Trial (SoFT)

Aaltje Y. Adema^a Maarten A. de Jong^c Martin H. de Borst^c Pieter M. ter Wee^a Marc G. Vervloet^{a, b} for the NIGRAM Consortium

COMBINE Study: The CKD Optimal Management With Blnders and NicotinamidE study

Increasing study duration and study costs

Isakova T, et al J Am Soc Nephrol 26: 2328–2339, 2015

GLOBAL OU

Fibroblast Growth Factor 23 and Vascular Calcification: Is It Set in Stone?

Gary C.W. Chan Sydney C.W. Tang

Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China

- FGF23 is evidently a biomarker for CKD-MBD
- Evidence for and against FGF23 for an early biomarker and relation with CV events
- Hence the jury is still out!
- Interventional studies that reduce FGF23 with longitudinal FU may yield a more definitive answer – maybe in 10 yrs (Vervloet M, personal comm, 25 Aug 2016)

Thank you!

Acknowledgment: Gary Chan Stella Yiu Liu Yang Miao Lin Ruixi Li Haojia Wu Dickson Wong Chris Chan Joseph Leung Loretta Chan Kar Neng Lai

Victoria Harbour, HK