KDIGO 2016 Controversies Conference

ATYPICAL HEMOLYTIC UREMIC SYNDROME AND C3 GLOMERULOPATHY

David Kavanagh

Professor of Complement Therapeutics National Renal Complement Therapeutics Service

OVERVIEW aHUS C3G CONTROVERSIES CONFERENCE

- 1. INTRODUCTION
- 2. RENAL PATHOLOGY
- **3.**CLINICAL PHENOTYPE & ASSESSMENT
- 4.GENETIC & ACQUIRED DRIVES OF DISEASE
- 5. TREATMENT
- 6. RESEARCH RECOMMENDATIONS

PART 1:

INTRODUCTION

Complement Activation

Complement Regulation

ATYPICAL HEMOLYTIC UREMIC SYNDROME (aHUS)

- Ultra-rare disease (UK- 0.42/million population/yr)
 - acute kidney injury
 - thrombocytopenia
 - microangiopathic hemolytic anemia.
- At least 50% of aHUS patients have an underlying inherited and/or acquired complement abnormality.
- Historically prognosis poor- most rapid ESRF
- Eculizumab, a humanized mAb against C5 changed natural history of disease

C3 GLOMERULOPATHY (C3G)

- C3G ultra rare (1/million population/yr)
- C3G comprises a group of kidney diseases driven by uncontrolled activation of the complement cascade that leads to C3 deposition within the glomerulus.
- The dysregulation of C3 convertase is driven by genetic and/or acquired defects.
- A biopsy is required to make the diagnosis.
- Two major subtypes dense deposit disease (DDD) and C3 glomerulonephritis (C3GN).

PART 2:

Renal Pathology

aHUS PATHOLOGY

- aHUS is a thrombotic microangiopathy (TMA).
- Pathology -tissue response to endothelial injury.
- Overt thrombosis not always seen
 - Suggested mircoangiopathy +/- thrombosis
- In general, it is not possible to determine etiology from morphology.
- The presence of C5b-9 staining is not a reliable indicator of aHUS.

MORPHOLOGICAL FEATURES IN MICROANGIOPATHY

Active Lesions

Glomeruli

- Thrombi
- Endothelial swelling or denudation
- Fragmented red blood cells
- Subendothelial flocculent material by EM
- Mesangiolysis
- Microaneurysms

Arterioles

- Thrombi
- Endothelial swelling or denudation
- Intramural fibrin
- Fragmented red blood cells
- Intimal swelling
- Myocyte necrosis

Arteries

- Thrombi
- Myxoid intimal swelling
- Intramural fibrin
- Fragmented red blood cells

Thrombi

Mircoaneurysms

Flocculent material

Fibrin

Bloodless / fragments

Mesangiolysis

MORPHOLOGICAL FEATURES IN MICROANGIOPATHY

Chronic Lesions

Glomeruli

- Double contours of peripheral capillary walls by LM, with variable mesangial interposition
- New subendothelial basement membrane by EM
- Widening of the subendothelial zone by EM

Arterioles

Hyaline deposits

Arteries

 Fibrous intimal thickening with concentric lamination (onion skin)

myointimal proliferation

Tubular atrophy

C3G PATHOLOGIES

- The C3G disease spectrum is caused by abnormal control of complement activation, deposition or degradation
- Light microscopy- diverse
- Predominant glomerular C3 fragment deposition on IF
 - (x2 greater than other immunoreactants IgG, IgM, IgA C1q)
 - 90% DDD, less C3GN
- Electron microscopy (EM) is used to sub-classify C3G as DDD or C3GN.

C3 & Immunoglobulin deposition

Dominant C3 Deposition

MORPHOLOGICAL FEATURES OF C3G

Light Microscopy

Active lesions

- Mesangial expansion with or without hypercellularity
- Endocapillary hypercellularity including monocytes and/or neutrophils
- Capillary wall thickening with double contours (the combination of capillary wall thickening and mesangial increase is referred to as a membranoproliferative pattern)
- Necrosis
- Cellular/fibrocellular crescents

Chronic lesions

- Segmental or global glomerulosclerosis
- Fibrous crescents

Immunofluorescence Microscopy

• Typically dominant C3 staining

Electron Microscopy

- DDD: Dense osmiophilic mesangial and intramembranous electron dense deposits
- C3GN: Amorphous mesangial with or without capillary wall deposits including subendothelial, intramembranous and subepithelial electron dense deposits
- Sub-epithelial 'humps' may be seen in both DDD and C3GN (not pathognomonic of post infectious GN)

DDD with MPGN pattern

Dominant C3 staining

Dense transformation BM

HUNNEY DISERTON

C3G PATHOLOGY: CONTROVERSIES

- Correlations between renal biopsy appearances, etiology and clinical outcome are ill-defined.
- IF staining is subjective and semiquantitative.
 - Well-defined for dense deposit disease (DDD).
 - Not clear if characteristic for C3 glomerulonephritis (C3GN).
- Role of C4d staining in distinguishing C3G from IC MPGN requires further investigation
- Pronase digestion should be considered in all cases
 - Masked monotype Ig deposits

Part 3: Clinical Phenotype and Assessment

CLASSIFICATION OF THROMBOTIC MICROANGIOPATHIES

Kidney Disease: Improving Global Outcomes

GLOBAL OUTC

PENETRANCE

• Disease penetrance for an acute episode of aHUS in carriers of known pathogenic mutations increases with age.

Noris CJASN 5:1844

aHUS

 Current classifications of aHUS reflect a better understanding of disease mechanisms, including the impact of genetic background and etiologic triggers.

 Triggers e.g. pregnancy, infections.

aHUS

- Eculizumab has changed the natural history of disease
 - Previously most rapidly progressed to ESRF
 - Prompt presentation usually leads to prompt resolution
 - Unclear what will happen on Ecu removal
- The time course and persistence of an aHUS episode are not well understood.
 - i.e. acute vs chronic disease
 - Some, but not all, patients may be at life-long risk for recurrent acute presentation.

C3G

- C3G generally follows a chronic, indolent course with persistent AP activation
- 10-year renal survival of approximately 50%.

• There are, however, cases of C3G that present as a rapidly progressive GN.

EXTRARENAL MANIFESTATIONS

aHUS

- Extrarenal manifestations are reported in up to 20% of patients.
- It is unclear whether these manifestations are a direct consequence of complement activation, TMA, or other factors such as severe hypertension and uremia.

C3G

 Acquired partial lipodystrophy (APL) and retinal drusen are reported and appear to be direct consequences of complement activation.

LABORATORY ANALYSIS

PART 4:

GENETIC AND ACQUIRED DRIVERS OF DISEASE

GENETIC DRIVERS OF DISEASE aHUS

aHUS

- Studies of hundreds of aHUS patients have provided an excellent understanding of genetic drivers of disease, leading to the development of individualized care.
- Genetic screening and molecular diagnostics, with expert interpretation of the results, should inform therapeutic decisions.

GENETIC DRIVERS OF DISEASE C3G

C3G

- Understanding of the genetics of C3G is not yet comparable to that of aHUS.
- There is no clear benefit to performing genetic analysis in all cases of C3G.

GENETIC TESTING

- In aHUS and C3G
 - Screen CFH, CD46, CFI, C3, CFB, THBD, CFHR1, CFHR5, & DGKE.
- In aHUS,
 - Screen risk haplotypes CFH-CFHR3 and MCP_{agaac}

- modify disease penetrance and severity.

- In both aHUS and C3G,
 - copy number variation analysis
 - hybrid genes and other complex genomic rearrangements in the CFH/CFHRs genomic region must be included in the genetic testing.

GENETIC TESTING

- In aHUS identification of pathogenic variant
 - Reinforces diagnosis & establishes cause of disease
 - Facilitates management & genetic counseling
- In aHUS genetic analysis is essential in living-related kidney donor transplantation.
 - Only consider if causative genetic factor identified & absent in donor
- In aHUS, genetic testing is recommended for patients in whom discontinuation of Eculizumab is being considered.
- In C3G less clear

UNDERSTANDING GENETIC VARIANTS

 Genetic variants should be classified as "benign," – "likely benign," "variant of uncertain significance (VUS)," "likely pathogenic," or "pathogenic," following international guidelines.

ACMG STANDARDS AND GUIDELINES inMedicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Biue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

 Genetic analysis should be interpreted by a laboratory with expertise in aHUS and C3G

ACQUIRED DRIVERS OF DISEASE

 In both aHUS and C3G, acquired drivers of disease are autoantibodies to complement proteins or protein complexes that impair normal function.

ACQUIRED DRIVERS OF DISEASE

- In aHUS, the best-studied acquired drivers are FH autoantibodies, which are usually seen in association with deletion of the *CFHR3* and *CFHR1* genes.
 - The deletion of CFHR3 and CFHR1 is a common copy number variation that can be identified on genetic testing.
 - The finding of FH autoantibodies should be confirmed in a second sample at least 4 weeks after the initial sample.

ACQUIRED DRIVERS OF DISEASE

- In C3G, the most common autoantibodies are to C3 convertase, a serine protease formed from C3b and Bb
 - These autoantibodies are called C3Nefs
 - They stabilize C3 convertase and prolong its half-life
- Other antibodies in C3G include FH autoantibodies and C4Nefs
- In older adults, serum free light chains (FLC) should be assayed.
 - Serum FLC assays have contributed to major improvements in care for patients with monoclonal gammopathy.
 - Serum FLC assays can be used as a first-line test in screening pathways for a light chain clone in older adults with kidney disease

PART 5:

TREATMENT STRATEGIES

TREATMENT: aHUS

- All patients with a clinical diagnosis of primary aHUS are eligible for treatment with eculizumab.
 - The dosing schedule as per Eculizumab registration trials
- Treatment duration is controversial as there is no evidence to support life-long therapy in all aHUS patients.
 - Two options for long-term dosing have been considered:
 - The minimal dose required to achieve complement blockade
 - A discontinuation dosing schedule.
 - Dose reduction or discontinuation require ongoing monitoring

TREATMENT: aHUS

- If access to eculizumab is unavailable, plasma therapy can be used.
- The use of plasma exchange when eculizumab is available may be associated with some improvement but delaying use of eculizumab may lead to a suboptimal therapeutic outcome.
- Eculizumab increases the risk of meningococcal infection.
 - Patients should receive vaccination against meningococcus (including Type B); however, vaccination should not delay the start of eculizumab therapy.
 - Antibiotic prophylaxis is mandated during the first 2 weeks.

TREATMENT: aHUS: TRANSPLANT

- Kidney transplantation should be delayed for at least 6 months after the start of dialysis as limited renal recovery is possible several months after starting eculizumab.
- Living-related kidney donation carries a risk for recurrence in the recipient and a risk of de novo disease in the donor should the donor carry an at-risk genetic variant.
- Liver transplant remains an option in patients with liverderived complement protein abnormalities, in particular for renal transplant recipients with uncontrolled disease activity despite eculizumab therapy.

TREATMENT: C3G: ALL PATIENTS

All Patients	 Optimal blood pressure control (suggested blood pressure below the 90% in children and ≤120/80 in adults) Priority agents include angiotensin converting enzyme inhibitors and angiotensin receptor blockers Optimal nutrition for both normal growth in children, healthy weight in adults Lipid control
Moderate Disease	 Description Urine protein over 500 mg/24 hours despite supportive therapy OR Moderate inflammation on renal biopsy OR Recent increase in serum creatinine suggesting risk for progressive disease Recommendation Prednisone Mycophenolate mofetil
Severe Disease	 Description Urine protein over 2000 mg/24 hours despite immunosuppression and supportive therapy OR Severe inflammation represented by marked endo- or extracapillary proliferation with or without crescent formation despite immunosuppression and supportive therapy Increased serum creatinine suggesting risk for progressive disease at onset despite immunosuppression and supportive therapy Increased serum creatinine suggesting risk for progressive disease at onset despite immunosuppression and supportive therapy Methylprednisolone pulse dosing as well as other anti-cellular immune suppressants have had limited success in rapidly progressive disease Data are insufficient to recommend eculizumab as a first-line agent for the treatment of rapidly progressive disease

TREATMENT: C3G

- A retrospective study supports the effectiveness of mycophenolate mofetil in C3GN patients.
- No specific recommendation can be made for plasma therapy or rituximab (an anti-CD20 antibody).
- Since the pathogenesis of C3G is due to dysregulation and hyperactivity of the alternative pathway of complement, eculizumab has been tried in a limited number of patients with varied results.

TREATMENT: C3G: TRANSPLANT

- No specific data are available to inform decisions surrounding transplantation in C3G.
- Recommendations reflect expert opinion and limited case reports.
- C3G recurs in allografts at a high rate, leading to graft loss in ~50% of patients.

RESEARCH RECOMMENDATIONS: SUMMARY

- aHUS
 - A comparative study of biopsies from patients with well-documented malignant hypertension and patients with well-documented alternative complement pathway disease
 - A longitudinal study of patients with features of chronic microangiopathy on biopsy but without a history of acute presentation
- C3G
 - A multicenter study analyzing biopsies to define the relationship of morphology to etiology, clinical course and response to therapy
 - Comprehensive genetic testing to fill the knowledge gap in establishing robust phenotype-genotype correlations

RESEARCH RECOMMENDATIONS: SUMMARY

- Clinical studies aHUS
 - Define how complement biomarkers correlate with current or impending aHUS relapse and/or renal involvement
 - Identify risk factors for relapse upon cessation of anti-complement therapy
 - Identify alternative anti-complement therapeutics
- Clinical studies C3G
 - Assess the value of proximal (at the level of the AP) anti-complement therapy
 - Development and trial novel complement inhibitors
 - Determine value of complement biomarkers to inform clinical outcome in C3G patients and stratify them into targeted treatment groups

CONCLUSIONS

 While there are knowledge gaps in both aHUS and C3G, the evidence base for the management of patients with C3G lags behind that of aHUS; addressing this disparity should be a priority.

 Although these two diseases are presented as distinct entities, there is substantial overlap in their pathogenesis and clinical presentation.

Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference

OPEN

Timothy H.J. Goodship¹, H. Terence Cook², Fadi Fakhouri³, Fernando C. Fervenza⁴, Véronique Frémeaux-Bacchi⁵, David Kavanagh¹, Carla M. Nester^{6,7}, Marina Noris⁸, Matthew C. Pickering², Santiago Rodríguez de Córdoba⁹, Lubka T. Roumenina^{10,11,12}, Sanjeev Sethi¹³ and Richard J.H. Smith^{6,7}; for Conference Participants¹⁴

¹Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; ²Centre for Complement and Inflammation Research, Department of Medicine, Imperial College Hammersmith Campus, London, UK; ³INSERM, UMR-S 1064, and Department of Nephrology and Immunology, CHU de Nantes, Nantes, France; ⁴Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; ⁵Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; ⁶Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ⁷Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ⁸IRCCS–Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Ranica, Bergamo, Italy; ⁹Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain; ¹⁰Institut National de la Santé et de Ia Recherche Médicale, Unité Mixte de Recherche S1138, Complément et Maladies, Centre de Recherche des Cordeliers, Paris, France; ¹¹Université Paris Descartes Sorbonne Paris-Cité, Paris, France; ¹²Université Pierre et Marie Curie (UPMC-Paris-6), Paris, France; and ¹³Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

FOLLOW KDIGO

www.kdigo.org

Twitter.com/goKDIGO

