CONDUCTING CLINICAL TRIALS IN NEPHROLOGY: CONTROVERSIES CONFERENCE

GEOFFREY A. BLOCK, MD
DENVER NEPHROLOGY
DENVER, USA
“Improve the care and outcomes of kidney disease patients worldwide through the development and implementation of clinical practice guidelines.”
Controversies Conferences examine important nephrology topics that result in a published position paper to share with the community.

The KDIGO Controversies Conference may conclude that there is enough evidence and need to prompt the development or update of an existing KDIGO Clinical Practice Guideline.
Meeting Rationale and Objectives

- Chronic Kidney Disease is a *growing, global*, public health issue with high societal costs and high individual patient burden.
- There is *very limited* reliable information to guide the care of patients with CKD.
- Most randomized trials in nephrology have been too small to detect treatment effects of moderate size (15-20% reduction in major outcomes such as death or disability).
- Conducting RCT’s in nephrology is challenging.
- Slides from todays presentation are from the outstanding speakers who presented at the KDIGO Controversies Conference in Paris, September 2016 including: Dr. Jonathan Craig, Dr. Leslie Inker, Dr. Michael Walsh, Dr. Vlado Perkovic and Dr. Martin Landry.
- The conference agenda and select presentations are available at http://kdigo.org/conferences/clinical-trials/.
- My goal is to communicate some of the important aspects of the Controversies Conference.
OVERVIEW

• Clinical trial Design

• Outcomes for clinical trials in nephrology: Renal and Non-Renal

• Conduct of clinical trials

• 4 KEY components of high quality RCT’s
 – Adequate number of patients enrolled (to ensure adequate number of outcomes)
 – Adherence to assigned study treatment
 – Ascertainment of outcomes fully
 – Analysis is statistically appropriate
Clinical Trials in Nephrology

1Am J Kidney Dis 2011;58(3):349
THE EFFECTS OF NORMAL AS COMPARED WITH LOW HEMATOCRIT IN PATIENTS WITH CARDIAC DISEASE WHO ARE RECEIVING HEMO AND EPOETIN

ANATOLE BESEARAB, M.D., W. KELE BOLTON, M.D., JEFFREY K. BROWNE, PH.D., JOAN C. EGRE, ALLEN R. NISSENSON, M.D., DOUGLAS M. OKAMOTO, Ph.D.

ABSTRACT

Background In patients with end-stage renal disease, anemia develops as a result of erythropoietin deficiency, and recombinant human erythropoietin (epoetin) is prescribed to correct the anemia partially. We examined the risks and benefits of normalizing the hematocrit in patients with cardiac disease who were undergoing hemodialysis.

Methods We studied 1233 patients with clinical evidence of congestive heart failure or ischemic heart disease who were undergoing hemodialysis: 618 patients were assigned to receive increasing doses of epoetin to achieve and maintain a hematocrit of 42 percent, and 615 were assigned to receive doses of epoetin sufficient to maintain a hematocrit of 30 percent throughout the study. The median duration of treatment was 14 months. The primary and primary post hoc analyses were by intention to treat. Results After 29 months, there were 183 deaths and 19 first nonfatal myocardial infarctions among the patients in the normal-hematocrit group and 150 deaths and 14 first nonfatal myocardial infarctions among those in the low-hematocrit group. The risk ratio for the normal-hematocrit group as compared with the low-hematocrit group, 1.39 (95 percent confidence interval, 0.9 to 1.95). Although the difference in event-free survival between the two groups did not reach the prespecified statistical stopping boundary, the study was halted. The causes of death in the two groups were similar. The mortality rates decreased with increasing epoetin values in both groups. The patients in the normal-hematocrit group had a decline in the adequacy of dialysis and received intravenous iron dextran more often than those in the low-hematocrit group.

Conclusions In patients with clinically evident congestive heart failure or ischemic heart disease who are receiving hemodialysis, administration of epoetin to raise their hematocrit to 42 percent is not recommended. (N Engl J Med 1998; 339:594-90.)

©1998, Massachusetts Medical Society.

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

BERNARD ZINMAN, M.D., CHRISTOPH WANNER, M.D., JOHN M. LACHIN, Sc.D., DAVID FITTCHETT, M.D., ERICH BULMUKHI, Ph.D., STEFAN HANTEL, Ph.D., MICHAELA MEIPEL, Dipl. Biomath., THERESA DEVINS, Dr.P.H., ODD ERIK JOHANSEN, M.D., PH.D., HANS J. WOEIRE, M.D., URI C. BREIDT, M.D., and SILVIO E. INZUCCHI, M.D., for the EMPA-REG OUTCOME Investigators

BACKGROUND

The effects of empagliflozin, an inhibitor of sodium-glucose cotransporter 2, in addition to standard care, on cardiovascular morbidity and mortality in patients with type 2 diabetes who have cardiovascular risk are not known.

METHODS

We randomly assigned patients to receive 10 mg or 25 mg of empagliflozin or placebo once daily. The primary composite outcome was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke, as analyzed in the pooled empagliflozin group versus the placebo group. The key secondary composite outcome was the primary outcome plus hospitalization for unstable angina.

RESULTS

A total of 7020 patients were treated (median observation time, 3.1 years). The primary outcome occurred in 490 of 3687 patients (10.5%) in the pooled empagliflozin group and in 282 of 3333 patients (8.5%) in the placebo group (hazard ratio in the empagliflozin group, 0.85; 95% confidence interval, 0.74 to 0.96; p=0.04 for superiority). There were no significant differences between-group differences in the rates of myocardial infarction or stroke, but in the empagliflozin group there were significantly lower rates of death from cardiovascular causes (3.7%, vs. 5.9% in the placebo group, 38% relative risk reduction), hospitalization for heart failure (2.7% and 4.1%, respectively; 35% relative risk reduction), and death from any cause (3.6% and 5.8%, respectively; 32% relative risk reduction). There was a significant between-group difference in the key secondary outcome (p=0.08 for superiority). Among patients receiving empagliflozin, there was an increased risk of genital infection but no increase in other adverse events.

CONCLUSIONS

Patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as compared with placebo, had a lower rate of the primary composite cardiovascular outcome and of death from any cause when the study drug was added to standard care. (Funded by Boehringer Ingelheim and Eli Lilly; EMPA-REG OUTCOME Clinical Trials.gov number, NCT01331676.)

Interpretation of the results of the EMPA-REG OUTCOME study suggests that empagliflozin decreases the risk of cardiovascular death and hospitalization for heart failure and stroke and reduces the risk of death from any cause. However, these effects were not observed for patients with advanced kidney disease.

Original Article
NEED FOR HIGH QUALITY RCT

Appendix B: Summary of Search and Review Process

Electronic Databases
Published: 11,195
Unpublished: 2,342

Handsearch
00

Studies Included in previous review
59

Duplicates
844

Revised
13,330

Abstract review
11,688

Excluded
16,157

Full-text review
1,519

Excluded
190

Included studies
117 studies
(published in 108 articles)

Reasons for exclusion:
Case Study = 142
Does Not Apply = 8,859
Not in English = 4
No CDO = 966
No Exposure of Interest = 978
No Human Data = 549
No Original Data = 661
Not Handsearching = 68
Other = 53

Reasons for exclusion:
Does Not Apply = 252
Follow-up Less Than 6 Months = 306
Missing Abstract = 0
No Human Data = 2
No Original Data = 38
No Subjects with CDO = 51
Not a RCT or Prospective Cohort = 740
Not in English = 12
Other = 45
Sample Size Less Than 10 – 30
Handsearch = 9
No Outcomes of Interest = 72
Fewer Than 10 Participants per Arm = 142
Fewer Than 10 Participants per Arm = 12
Fewer than 50 Participants = 75

Kidney Disease: Improving Global Outcomes
TRIAL DESIGN COMMON ISSUES

• Question already answered (e.g. ESA)
• Important questions not addressed – not important to CONSUMERS
 – SONG
• Trial population too narrow
 – Eligibility criteria must be practical and BROAD
 – Exclusion criteria should be based only on specific safety concerns
• Wrong outcome (e.g. all-cause mortality)
• Lack of Equipoise
 – Guideline committee must avoid making recommendations with weak evidence and should state explicitly where placebo controlled trials are needed
Consumers improve trials by:

- Identifying and prioritising topics
 - Stevens, 2003
- Getting trials funded
 - Terry, 2007
- Improving information sheets and consent forms
 - Marsden & Bradburn, 2004
- Ensuring outcome measures are relevant and feasible
 - Ali, 2006
- Increasing trial recruitment and identifying trials likely to recruit poorly
 - Terry, 2007
- Understanding the results of trials
 - Hanley, 2001
Patients-professionals differences

Outcome domains (n=20)
- Ability to travel
- Dialysis-free time
- Dialysis adequacy
- Washed out after dialysis
- Anaemia
- Mobility
- Blood pressure
- Fatigue
- Impact on family/friends
- Pain
- Ability to work
- Potassium
- Infection/immunity
- Target weight
- Cardiovascular disease
- Depression
- Vascular access problems
- Drop in blood pressure
- Hospitalisation
- Death/mortality

Favoured by health professionals

Favoured by patients
STANDARDIZED OUTCOMES IN NEPHROLOGY
HTTP://SONGINITIATIVE.ORG

1 CORE OUTCOMES
Critically important to all stakeholder groups
Report in all trials

2 MIDDLE TIER
Critically important to some stakeholder groups
Report in some trials

3 OUTER TIER
Important to some or all stakeholder groups
Consider for trials

1 FATIGUE
CARDIOVASCULAR DISEASE
VASCULAR ACCESS MORTALITY

2 Ability to travel
Ability to work
Anemia
Blood pressure
Depression
Dialysis adequacy
Dialysis-free time
Drop in blood pressure
Hospitalization
Impact on family/friends
Infection/Immunity
Mobility
Pain
Potassium
Target weight
Washed out after dialysis

3 Anxiety/stress
Bone health
Calcium
Cognition
Cramps
Financial impact
Food enjoyment
Itching
Nausea/vomiting
Parathyroid hormone
Phosphate
Restless legs syndrome
Sexual function
Sleep

Kidney Disease: Improving Global Outcomes
• A word on ‘Academia’
- Entire career in private practice and clinical research
• Principal Investigator on 97+ clinical trials
• Collaborator with global academic centers, pharmaceutical partners all over world
• Workgroup Member- KDIGO MBD 2009, 2017
STRATEGIES TO IMPROVE TRIAL CONDUCT

• Streamline the process of data collection by assessing a LIMITED number of critical data elements
• Maximize adherence and minimize loss to follow-up
• Improve the efficiency AND APPROPRIATENESS of trial monitoring- consider central risk-based statistical processes
• Rationalizing safety monitoring and pharmacovigilance activity with more focus on review of randomized aggregate data by un-blinded DSMB
• Make sure adjudication methods focus on events in which adjudication which materially influence interpretation
OBJECTIVES, HURDLES AND SUGGESTIONS FOR TRIAL DESIGN

• Answer an important question (many treatments already in use without reliable evidence)

• Uncertainty principle – if uncertain, randomize!

• Use routine databases to pre-screen; avoid unnecessary exclusions

• Run in; Enrichment to minimize non-adherence

• SIMPLE CRF’s – avoid complex definitions of outcomes

• Realistic effect size (15%); Event driven with minimum duration

• Account for non-adherence

• Rarely is total mortality best

• Allow flexibility in nontrial Rx

• Streamline data collection to fit with routine care for team/patient

• Identify primary/secondary/exploratory analyses up-front
Enrichment

Screening Period (up to 14 Days)
- Run-In Period 2 weeks if receiving max tolerated labeled dose of RAS
- Run-In Period up to 12 weeks if not receiving max tolerated labeled dose of RAS

Enrichment Period
- Atrasentan 0.75 mg QD (1574 subjects)
- Placebo QD (1574 subjects)

Double Blind Treatment Period (425 Events)
- Atrasentan 0.75 mg QD (500 subjects)
- Placebo QD (500 subjects)

Follow-Up Period (45 Days)
- 30% UACR reduction
- Placebo QD (500 subjects)
- Atrasentan 0.75 mg QD (500 subjects)
Impact of errors on the reliability of results

Accurate DATA ≠ Reliable RESULT

• **Random Errors**
 • add noise -> reduces power -> minimizes a difference
 • does not bias the result in any direction

• **Systematic Errors**
 • add bias -> lead towards a particular decision
 • direction & extent difficult to assess

Large *randomized* trials (appropriately analysed) are remarkably resistant to small random errors in the data

Data do not need to be perfect!
Second International Study of Infarct Survival (ISIS-2)

- Routine Care: 13% dead
- Aspirin only: 8% dead
- Streptokinase only: 8% dead
- Routine care + Streptokinase and Aspirin: 8% dead

Percentage dead vs. Weeks from starting treatment

ISIS-2 Lancet 1988
ISIS2: Protocol & procedures

Eligibility
- Signs or symptoms suggestive of definite or suspected acute myocardial infarction
- <24 hours since onset of episode of pain that led to admission
- No *clear* contra-indication to, or indication for, immediate streptokinase or aspirin, *in the view of the responsible physician*

Randomization
- By telephone - 9 questions plus site and patient identifiers

Follow-up data collection
- Discharge form
- Pre-randomization ECG
HAVE A WILLINGNESS TO CHANGE ‘HOW IT’S DONE’

INSANITY: DOING THE SAME THING OVER AND OVER AGAIN, AND EXPECTING DIFFERENT RESULTS.
Adherence to study treatment

• Clinical need always overrides research idealism

• Non-adherence
 • Active group stops active treatment
 • Active group starts other treatment (e.g. effective comparator)
 • Control group starts active treatment (unusual in IND studies)

• Impact on results
 • less difference between randomized groups
 • conservative for superiority assessments
 • counter-conservative for non-inferiority / safety assessments
Study Population
- Adult
- Hemodialysis
- iPTH \geq 300 pg/mL
- Ca \geq 8.4 mg/dL
- Ca x P \geq 45 mg2/dL2

Primary Endpoint
Time to composite event:
- All-cause mortality
- Myocardial infarction
- Hospitalization for unstable angina
- Heart failure
- Peripheral vascular event

Secondary Endpoints
- Clinical bone fracture
- Parathyroidectomy
- Cardiovascular mortality
- Stroke
- Individual components of primary endpoint

Standard Care Therapy
Includes Flexible use of:
- Vitamin D sterols
- Phosphate binders

Design
- Randomized (1:1), double-blind, placebo-controlled

Placebo plus Standard Care Therapy (n = 1900)
Cinacalcet plus Standard Care Therapy (n = 1900)

EVOLVE™

FSE = first subject enrolled; LSE = last subject enrolled.

Anatomy of a MCT

<table>
<thead>
<tr>
<th>Population</th>
<th>EVOLVE</th>
<th>TREAT</th>
<th>RED-HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects Enrolled</td>
<td>3883</td>
<td>4038</td>
<td>2278</td>
</tr>
<tr>
<td>Sites Participating</td>
<td>458</td>
<td>623</td>
<td>619</td>
</tr>
<tr>
<td>Countries Participating</td>
<td>22</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>Study Duration (years)</td>
<td>5.5</td>
<td>5</td>
<td>6.25</td>
</tr>
<tr>
<td>CRF pages*</td>
<td>1,320,077</td>
<td>791,000</td>
<td>540,000</td>
</tr>
<tr>
<td>Unique CRF pages /subject</td>
<td>148</td>
<td>178</td>
<td>217</td>
</tr>
<tr>
<td>Queries</td>
<td>800,741</td>
<td>116,000</td>
<td>50,802</td>
</tr>
<tr>
<td>Potential Endpoints Reported</td>
<td>6,657</td>
<td>4200</td>
<td>3000</td>
</tr>
<tr>
<td>Type of Investigational Product</td>
<td>Tablet</td>
<td>Injection</td>
<td>Injection</td>
</tr>
<tr>
<td>Doses of IP administered</td>
<td>3,748,241</td>
<td>140,535</td>
<td>61,921</td>
</tr>
</tbody>
</table>

* EVOLVE collected data in an electronic data capture system via eCRF
TREAT and RED-HF used paper case report forms for data collection
Adherence: the EVOLVE trial
The impact of drop-in and drop-out

<table>
<thead>
<tr>
<th>Patients on cinacalcet at end of the study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948 Were assigned to receive cinacalcet</td>
</tr>
<tr>
<td>1935 Were assigned to receive placebo</td>
</tr>
<tr>
<td>870 (45%) vs 440 (23%)</td>
</tr>
<tr>
<td>PTx 2.4% vs 7.6%</td>
</tr>
<tr>
<td>Total 45% vs ~30%</td>
</tr>
</tbody>
</table>

- Started commercial cinacalcet: 11.4%
- Started placebo: 22.7%

Chertow et al, NEJM 2012
Primary Composite Endpoint: Sensitivity Analyses

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Placebo (N=1935)</th>
<th>Cinacalcet (N=1948)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT</td>
<td>952 (49.2)</td>
<td>938 (48.2)</td>
<td>0.93 (0.85, 1.02)</td>
<td>0.112</td>
</tr>
<tr>
<td>Lag Censoring (6 mos)</td>
<td>658 (34.0)</td>
<td>638 (32.8)</td>
<td>0.85 (0.76, 0.95)</td>
<td>0.003</td>
</tr>
<tr>
<td>Censor at PTX</td>
<td>911 (47.1)</td>
<td>916 (47.0)</td>
<td>0.90 (0.82, 0.99)</td>
<td>0.031</td>
</tr>
<tr>
<td>Censor at KTX</td>
<td>907 (46.9)</td>
<td>891 (45.7)</td>
<td>0.90 (0.82, 0.99)</td>
<td>0.029</td>
</tr>
<tr>
<td>Censor at Commercial Cinacalcet Use</td>
<td>818 (42.3)</td>
<td>870 (44.7)</td>
<td>0.90 (0.82, 0.99)</td>
<td>0.032</td>
</tr>
<tr>
<td>Censor at PTX or Commercial Cinacalcet Use</td>
<td>786 (40.6)</td>
<td>854 (43.8)</td>
<td>0.87 (0.79, 0.96)</td>
<td>0.006</td>
</tr>
<tr>
<td>Censor at PTX, Commercial Cinacalcet, or KTX</td>
<td>748 (38.7)</td>
<td>812 (41.7)</td>
<td>0.84 (0.76, 0.93)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
MISSING INFORMATION

- **Clinical**
 - Lack of information on key efficacy endpoints
 - Lack of information on potential safety issues
- **Statistical**
 - Random: loss of power, underestimate of difference
 - Systematic bias: unable to determine presence, direction or extent of any signal
- **Lost contact**
- **“Withdrawal of consent”**
- **Premature site closure**
- **Inappropriate protocol / procedures**
 - stop follow-up after treatment discontinuation or primary event
 - per-protocol analyses
Inclusion criteria:
- Acute coronary syndrome

Sample size:
- 15,526

Intervention:
- Twice daily rivaroxaban 2.5 mg vs 5 mg vs placebo

Impact of loss to follow-up on reliability and interpretation of results (ATLAS trial)

<table>
<thead>
<tr>
<th>Event</th>
<th>Rivaroxaban</th>
<th>Placebo</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV death, MI or stroke</td>
<td>8.9%</td>
<td>10.7%</td>
<td>0.008</td>
</tr>
<tr>
<td>Non-CABG major bleeding</td>
<td>2.1%</td>
<td>0.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>Intra-cranial bleeding</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.009</td>
</tr>
<tr>
<td>Fatal bleeding</td>
<td>0.3%</td>
<td>0.2%</td>
<td>0.66</td>
</tr>
</tbody>
</table>

BUT

- 15.5% premature discontinuations
 - including 8.3% withdrew consent with vital status unknown in 86% of these
- Differential missingness for primary endpoint
 - 12.4% rivaroxaban vs 11% placebo

FDA rejected possible indication for rivaroxaban in ACS patients because of concerns regarding missing data

Schulz & Grimes Lancet. 2002;359:781-785
GFR Decline as an Endpoint for Clinical Trials in CKD: A Scientific Workshop Sponsored by the National Kidney Foundation and the US Food and Drug Administration

Andrew S Levey (Chair), Josef Coresh, Norman Stockbridge, Aliza Thompson, Edmund Lewis, Kerry Willis, Dick de Zeeuw, Alfred Cheung, John Lawrence, Kunihiro Matsushita, Lesley Inker, Tom Greene

Levey et al AJKD 2015 FDA-NKF Dec 2012 Workshop report
Current state of CKD Progression Endpoints

- Kidney failure is a hard clinical outcome of interest, but is late and earlier stages of disease are also associated with substantial morbidity.
- GFR decline is on the path to kidney failure; a sufficiently large change in GFR, defined as halving of GFR (2XScr), is accepted as a clinical endpoint for the progression to kidney failure, but is also a late event in CKD and takes a long time to develop.
- Consequently, trials are restricted to patients with late stage or rapidly progressive disease.
- Treatments for earlier stages of disease may not be effective at later stages, thus use of currently used endpoints may miss the opportunity to identify effective treatments at earlier stages.
Renal Outcome Recommendation

Table 2 | Suggested outcomes in measuring kidney disease status in randomized trials

<table>
<thead>
<tr>
<th>CKD stage</th>
<th>Slow</th>
<th>Rapid<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage: CKD G1-G3a (eGFR ≥45 ml/min per 1.73 m<sup>2</sup>)</td>
<td>• Slope of mGFR or eGFR or Surrogate outcome or Combinations of outcomes</td>
<td>30%–40% decline in eGFR using repeat measurements to rule out transient acute effects<sup>c</sup></td>
</tr>
<tr>
<td>Late stage: CKD G3b-G5 (eGFR <45 ml/min per 1.73 m<sup>2</sup>)</td>
<td>End-stage kidney disease or 30%–40% decline in eGFR<sup>c</sup> or doubling of serum creatinine level (or 40%–57% decline in eGFR)<sup>c</sup></td>
<td>End-stage kidney disease</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; mGFR, measured glomerular filtration rate.

^aFor example, in patients with macroalbuminuria.

^bSurrogates may include measures of activity of disease (e.g., in lupus nephritis) or kidney structure (e.g., in adult polycystic kidney disease).

^cThe added value of eGFRs outside the routine study visit schedule has not yet been demonstrated and they may be unnecessary.
CHANGE IN ALBUMINURIA AND GFR AS END POINTS FOR CLINICAL TRIALS IN EARLY STAGES OF CKD:

- A Scientific Workshop Sponsored by the National Kidney Foundation, US Food and Drug Administration and European Medicines Agencies

- Planning underway for March 2018

- Albuminuria may be an appropriate endpoint in the setting of structural damage or if there is evidence that effects of treatment are durable
 - Prevention of macroalbuminuria, remission to microalbuminuria, pre-determined quantitative change
Why non-renal outcomes?

CKD / ESRD / Transplant / Autoimmune kidney disease

- Anemia
- Arrhythmia
- Coronary disease
- Heart failure
- Infections
- Mineral bone disease
- Relapses of autoimmune disease
- Strokes
- Uremia and side effects

Reduced Quantity and Quality of Life
Definitions

• **Patient Important Outcome**
 – Variable that reflects how the patient feels functions or survives (something meaningful to patients)

• **Surrogate Outcome**:
 – Variable which predicts clinical benefit (or harm) based on epidemiologic, therapeutic or scientific evidence

• **Biomarkers and correlates**:
 – Associated with the clinical endpoint but does not necessarily modify predictably with intervention

Balancing biological effects with unequivocally patient-important effects

Other causes that diminish the role (and effect) of intended treatment

(Cause specific non-fatal events) (Cause specific mortality) (Overall Mortality)

(Putative) biology of disease

(Disease specific symptoms) (Relevant HRQoL Domain) (Overall HRQoL)
ALL-CAUSE MORTALITY: ‘NOISE’

• Assume:
 – 10/100 per year death rate
 • 50% CV deaths = 5/100 per year
 – 50% of CV death due to MBD = 2.5/100 per year
 » Intervention reduces MBD death rate 50% = 1.25/100 deaths per year avoided
 • RRR on MBD = 50%
 • RRR on all cause death = 12.5%

• All-cause death outcome
 – Control group = 10 events per 100 patient years
 – Treatment group = 8.75 events per 100 patient years
 – Alpha 0.05, power 80%
 – 17,070 participants
 • Total 1,280 events
CARDIOVASCULAR MORTALITY

- **CV death outcome**
 - Control group = 2.5 events per 100 patient years
 - Treatment group = 1.25 events per 100 patient years
 - Alpha 0.05, power 80%
 - 3,700 participants
 - Total of 70 events

- **All-cause mortality is rarely an appropriate outcome in kidney trials**
- **Composite outcomes should be comprised of events likely to be influenced by the treatment and not just common events**
Endpoint adjudication in kidney disease

- What is the impact of endpoint adjudication on renal outcomes?
- Is there value in adjudicating biochemical measures?
- Is confirmation important?
- Can we streamline the process?
ADVANCE endpoint adjudication

Conclusion: ‘no discernable impact’

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Adjudication</th>
<th>Number of events</th>
<th>Favours active</th>
<th>Favours placebo</th>
<th>Relative risk reduction (%; 95% CI)</th>
<th>P homog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined macro + microvascular Invest.</td>
<td>1018</td>
<td>1087</td>
<td>8 (-1 to 15)</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAC</td>
<td>861</td>
<td>938</td>
<td>9 (0 to 17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major macrovascular Invest.</td>
<td>557</td>
<td>586</td>
<td>6 (-6 to 16)</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAC</td>
<td>480</td>
<td>520</td>
<td>8 (-4 to 19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfatal MI Invest.</td>
<td>177</td>
<td>172</td>
<td>-2 (-26 to 17)</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAC</td>
<td>136</td>
<td>135</td>
<td>0 (-27 to 21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfatal stroke Invest.</td>
<td>258</td>
<td>250</td>
<td>-2 (-22 to 14)</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAC</td>
<td>193</td>
<td>184</td>
<td>-4 (-28 to 15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV death Invest.</td>
<td>188</td>
<td>236</td>
<td>21 (4 to 35)</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAC</td>
<td>211</td>
<td>257</td>
<td>18 (2 to 32)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adjudicated vs routine claims data:

Effect of HRT on cardiac events in Women’s Health Initiative

Hlatky et al. Circ Cardiovasc Qual Outcomes 2014
KEEPING IT (TOO) SIMPLE: TRIALS ARE RARELY ONLY ‘POSITIVE’ OR ‘NEGATIVE’

<table>
<thead>
<tr>
<th>Table 1. Questions to Ask When the Primary Outcome Fails.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there some indication of potential benefit?</td>
</tr>
<tr>
<td>Was the trial underpowered?</td>
</tr>
<tr>
<td>Was the primary outcome appropriate (or accurately defined)?</td>
</tr>
<tr>
<td>Was the population appropriate?</td>
</tr>
<tr>
<td>Was the treatment regimen appropriate?</td>
</tr>
<tr>
<td>Were there deficiencies in trial conduct?</td>
</tr>
<tr>
<td>Is a claim of noninferiority of value?</td>
</tr>
<tr>
<td>Do subgroup findings elicit positive signals?</td>
</tr>
<tr>
<td>Do secondary outcomes reveal positive findings?</td>
</tr>
<tr>
<td>Can alternative analyses help?</td>
</tr>
<tr>
<td>Does more positive external evidence exist?</td>
</tr>
<tr>
<td>Is there a strong biologic rationale that favors the treatment?</td>
</tr>
</tbody>
</table>
SUMMARY

• Unquestionable need for more, higher quality, RCT’s in nephrology
• Nephrologists MUST have equipoise and apply the ‘uncertainty’ principle!
• We must place a higher emphasis on outcomes meaningful to patients – SONG-
• SIMPLIFY and STREAMLINE the design of RCT’s and keep in mind the essential components (adequate sample size, adherence, ascertainment of outcomes, analysis using appropriate ITT methods)