Preventing AKI in Cardiac Surgery

Daniel Engelman MD, FACS
Associate Professor of Surgery, UMASS-Baystate
President, ERAS® Cardiac Society
Medical Director, Heart, Vascular, and Critical Care Surgical Services
Baystate Medical Center
Springfield, MA
DISCLOSURES

Consultant for Astute Medical, Zimmer-Biomet, and Edwards Lifesciences
Our old standard protocol for patients with no creatinine rise on POD #1

• Patients maintained on vasopressors and inotropes prn to keep MAP >65 and CI >2.0

• Full dose potentially nephrotoxic medications (antibiotics, ACE-I’s, ARB’s)

• High threshold for blood transfusion (no transfusions for HCT > 21)

• Maintain > 30 cc/hr of urine output with a combination of Lasix and fluids (often at the same time)

• Swan or minimally invasive (FloTrac) monitor, central line and arterial lines, and Foley all removed and patients transferred to telemetry the morning after surgery.
LIMITATIONS:

• Serum creatinine has been shown to be a lagging indicator of AKI development and it is easily influenced by many factors, including sex, muscle mass and other medications.

• Urine output is monitored in most critical care settings, however, the ability of urine output to predict subsequent AKI complications after cardiac surgery is limited.
Section 2: AKI Definition

2.1.1: AKI is defined as any of the following (Not Graded):
- Increase in SCr by \(\geq 0.3 \text{ mg/dL} (\geq 26.5 \text{ μmol/L}) \) within 48 hours; or
- Increase in SCr to \(>1.5 \text{ times baseline} \), which is known or presumed to have occurred within the prior 7 days; or
- Urine volume \(<0.5 \text{ mL/kg/h for 6 hours} \).

2.1.2: AKI is staged for severity according to the following criteria (Table 2). (Not Graded)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Staging of AKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>Serum creatinine</td>
</tr>
<tr>
<td>1</td>
<td>1.5-1.9 times baseline</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>(\geq 0.3 \text{ mg/dL} (\geq 26.5 \text{ μmol/L})) increase</td>
</tr>
<tr>
<td>2</td>
<td>2.0-2.9 times baseline</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>(\geq 4.0 \text{ mg/dL} (\geq 353.6 \text{ μmol/L})) increase</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>OR in patients <18 years, decrease in eGFR to (<35 \text{ mL/min per 1.73 m}^3)</td>
</tr>
</tbody>
</table>

Classifications of Loss and End-stage disease are beyond the current scope of follow-up. Code yes if the patient meets the highlighted RIFLE Failure criteria or if dialysis was newly required post op.

Risk (R) - Increase in serum creatinine level X 1.5 or decrease in GFR by 25%, or UO \(<0.5 \text{ mL/kg/h for 6 hours} \)

Injury (I) - Increase in serum creatinine level X 2.0 or decrease in GFR by 50%, or UO \(<0.5 \text{ mL/kg/h for 12 hours} \), or decrease in GFR by 75%; UO \(<0.3 \text{ mL/kg/h for 24 hours} \), or anuria for 12 hours

Failure (F) – Increase in serum creatinine level X 3.0, or serum creatinine \(\geq \text{mg/dL} \) with at least a 0.5 mg/dL rise, or decrease in GFR by 75%; UO \(<0.3 \text{ mL/kg/h for 24 hours} \), or anuria for 12 hours

Loss (L) - Persistent ARF, complete loss of kidney function > 4 weeks
AKI Prevalence After Cardiac Surgery

<table>
<thead>
<tr>
<th>Type of CT Surgery</th>
<th>No AKI (Risk)</th>
<th>Mild AKI (Risk)</th>
<th>Moderate AKI (Injury)</th>
<th>Severe AKI (Failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Types</td>
<td>1708 (57%)</td>
<td>637 (22%)</td>
<td>386 (13%)</td>
<td>242 (8%)</td>
</tr>
<tr>
<td>Isolated CABG</td>
<td>291 (63%)</td>
<td>328 (23%)</td>
<td>136 (10%)</td>
<td>58 (4%)</td>
</tr>
<tr>
<td>Valve surgery</td>
<td>324 (51%)</td>
<td>151 (24%)</td>
<td>99 (15%)</td>
<td>66 (10%)</td>
</tr>
<tr>
<td>Aortic surgery</td>
<td>213 (45%)</td>
<td>86 (18%)</td>
<td>92 (19%)</td>
<td>84 (18%)</td>
</tr>
<tr>
<td>Thoracic surgery</td>
<td>268 (67%)</td>
<td>63 (16%)</td>
<td>49 (12%)</td>
<td>21 (5%)</td>
</tr>
<tr>
<td>Heart transplant</td>
<td>2 (6%)</td>
<td>9 (26%)</td>
<td>10 (29%)</td>
<td>13 (38%)</td>
</tr>
</tbody>
</table>
Readmission Rates

30-Day Readmissions (%)

- **No AKI**: 9.3%
- **Mild (Stage 1)**: 16.1%
- **Moderate (Stage 2)**: 21.8%
- **Severe (Stage 3)**: 28.6%

KDIGO
REDUCED SHORT-TERM SURVIVAL

In-Hospital Mortality

Cumulative Survival

Time (Days)

No AKI
KDIGO Stage 1
KDIGO Stage 2
KDIGO Stage 3

6.1%
22.6%
35.9%

4x
6x
30-DAY MORTALITY INCREASES

Minimal Changes of Serum Creatinine Predict Prognosis in Patients after Cardiotoracic Surgery: A Prospective Cohort Study

ANDREA LASSNIGG,* DANIEL SCHMIDLIN,† MOHAMED MOUHIEDDINE,* LUCAS M. BACHMANN,‡ WILFRED DRUML,§ PETER BAUER, and MICHAEL HIESMAYR*

*Department of Cardiotoracic and Vascular Anesthesia and Intensive Care Medicine, University Hospital of Vienna, Vienna, Austria; †Division of Anesthesia and Intensive Care, Hirlanden Klinik im Park, Zürich, Switzerland; ‡Hornen Centre, University Zurich, Zurich, Switzerland; §Acute Dialysis Unit, Department of Internal Medicine III, University Hospital of Vienna, Vienna, Austria; and ‡Department of Medical Statistics, University of Vienna, Vienna, Austria

Figure 1. Thirty-day mortality and change in serum creatinine (ΔCrea) within 48 h after cardiac surgery. Distribution of ΔCrea (top) and mortality rates calculated for intervals of ΔCrea 0.1 mg/dl. Data are presented as mean ± SEM.
LONG-TERM SURVIVAL

\[\chi^2 = 41.1; P < 0.0001 \]
The AKI Effect

The Acute Kidney Injury Effect

<table>
<thead>
<tr>
<th></th>
<th>NoAKI</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS(^{14})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Cost(^{14})</td>
<td>$18,500</td>
<td>$38,900</td>
<td>$52,600</td>
</tr>
<tr>
<td>9.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-Day Readmission(^{15})</td>
<td>1x</td>
<td>2x</td>
<td>3x</td>
</tr>
<tr>
<td>Hospital Mortality(^{14})</td>
<td>2.3%</td>
<td>12.9%</td>
<td>26.0%</td>
</tr>
<tr>
<td>2x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-term & long-term consequences associated with increasing AKI severity

LOS: Total postoperative length of stay (days/patient);
Hospital Cost: Total postoperative cost (US$/patient);
30-Day Readmissions: Percent of postoperative patients;
Hospital Mortality: Percent of postoperative patients.
THE ACUTE KIDNEY RESPONSE TEAM (AKRT)

• So what do we do and how do we do it?
• Developed a protocol to integrate the use of NephroCheck into a multidisciplinary Acute Kidney Response Team (AKRT) to potentially reduce AKI development, severity and the number of patients who need dialysis.
• Designed a stepped alarm system for surgeons, advanced practitioners, nephrologists, critical care physicians and nurses that starts with the drawing of the urinary biomarker at 5:30 am the morning.
Our Multidisciplinary Approach to Reduce AKI

- Cardiac Surgeons
- Nephrologist
- Cardiologist
- Advanced Practitioners
- Pharmacist
- Critical Care Nurses
THE NEPHROCHECK TEST 2.0 (Feb 2019)

Intended to aid in assessing the risk of moderate to severe acute kidney injury (AKI)

WHO TO TEST

All cardiac surgery patients on post-op day 1 at 05:30

WHO NOT TO TEST

Pre-op creatinine >2, on dialysis or received methylene blue

STAGES OF ACUTE KIDNEY INJURY (AKI)

<table>
<thead>
<tr>
<th>Serum Creatinine</th>
<th>Urine Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase of 2.0 – 2.9 x baseline</td>
<td><0.5 ml/kg/h for 12 hours</td>
</tr>
<tr>
<td>Increase of >3x baseline or increase of Scr to >4mg/dL or initiation of RRT</td>
<td><0.3 ml/kg/h for 24 h or anuria for 12 h</td>
</tr>
</tbody>
</table>

WHEN & HOW TO TEST

1. Pt meets test inclusion: at 0530 POD1 collect fresh urine specimen (at least 10 ml)

2. Results will show up in CIS chemistry section under urine miscellaneous – click for value range. Lab will report results in time for HVCC 08:00 team rounds

AKI ACTION PLAN (on back of card)

<table>
<thead>
<tr>
<th>NC/ACUTE KIDNEY RESPONSE TEAM (AKRT) 2.0</th>
<th>FAST TRACK</th>
<th>TELE UNIT @ 4PM</th>
<th>ACTIVATE AKRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG <0.3</td>
<td>Keep Foley and monitor hourly UO until afternoon rounds. Transfer to telemetry (after 4PM) if all other transfer criteria are met (Cl/HR/Resp. ftx) and no oliguria treatment was required.</td>
<td>Keep Foley and monitor hourly UO. Maintain hemodynamic monitoring.</td>
<td></td>
</tr>
<tr>
<td>LOW (+) 0.3 - 0.7</td>
<td>VANC/GENTAMYCIN</td>
<td>AVOID NEPHROTOXINS NSAIDS, ARBs/ACE-I, VANC/GENTAMYCIN</td>
<td>AVOID NEPHROTOXINS NSAIDS, ARBs/ACE-I, VANC/GENTAMYCIN</td>
</tr>
<tr>
<td>HIGH (+) >0.7</td>
<td>Transfusion threshold Hgb <7.0 unless oliguric.</td>
<td>Renal dosing of medications</td>
<td></td>
</tr>
</tbody>
</table>

Goal directed therapy

(keep PAD>14 with LR, No diuretics unless PAD>20 or CHF), reassess transfusion threshold. Cl >2.5, SBP>130. Monitor SV02, Echo if <55%

Nephrology Consult
Repeat NC in 24hr
Sample Size

<table>
<thead>
<tr>
<th>Exclusion Criteria</th>
<th>Pre- NC (Initial N = 302)</th>
<th>Post NC (Initial N = 274)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient with Baseline Scr >2 (CKD & ESRD)</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Final Sample Size</td>
<td>285</td>
<td>255</td>
</tr>
</tbody>
</table>
Demographics

<table>
<thead>
<tr>
<th></th>
<th>Pre-NC (Count = 302)</th>
<th>Post-NC (Count = 274)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>74</td>
<td>53</td>
</tr>
<tr>
<td>Male</td>
<td>228</td>
<td>221</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 50</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>50's</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td>60's</td>
<td>105</td>
<td>97</td>
</tr>
<tr>
<td>70's</td>
<td>99</td>
<td>89</td>
</tr>
<tr>
<td>80's</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Asian</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Black or African American</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Hispanic</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Unknown</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>White</td>
<td>257</td>
<td>227</td>
</tr>
</tbody>
</table>
NephroCheck® Results

Percent of Patient

<table>
<thead>
<tr>
<th>NephroCheck Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3</td>
<td>43.9%</td>
</tr>
<tr>
<td>0.3 to 2.0</td>
<td>49.6%</td>
</tr>
<tr>
<td>> 2.0</td>
<td>6.5%</td>
</tr>
</tbody>
</table>
AKI Results (all stages combined)

Percent of CABG Patients with Stage 1 or Greater Acute Kidney Injury

P = 0.012

SD = 16%
SD = 12%
SD = 8%
SD = 4%
SD = 0%

Pre NephroCheck
Post NephroCheck
AKI Results by KDIGO Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pre NephroCheck</th>
<th>Post NephroCheck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 AKI</td>
<td>14%</td>
<td>41.0% Reduction</td>
</tr>
<tr>
<td>Stage 2 AKI</td>
<td>4.3%</td>
<td>44.3% Reduction</td>
</tr>
<tr>
<td>Stage 3 AKI</td>
<td>1%</td>
<td>100% Reduction</td>
</tr>
</tbody>
</table>

Percent of CABG Patients
Length of Stay

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-NC Mean (SD)</th>
<th>Post NC Mean (SD)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Surgical LOS</td>
<td>7.8 (4.8)</td>
<td>7.8 (6.6)</td>
<td>0.90</td>
</tr>
</tbody>
</table>
MOST COMMON INTERVENTIONS

• Avoiding over-diuresis on POD #1

• Discontinuing nephrotoxins.

• Raising the PAD pressure to 14-16 mm/Hg with balanced crystalloid.

• Instituting inotropes for depressed cardiac function to keep CI>2.5 & SBP>130.

• Prolonging hemodynamic monitoring.

• Increasing the frequency of urine output monitoring.

• Obtaining an early nephrology consultation.
FURTHER THOUGHTS....

• As the negative predictive value (NPV) with a NC threshold of 0.3 was 100%:
 • These patients may be candidates for liberal early use of potentially nephrotoxic agents such as: aggressive diuresis, ACE-I’s, ARB’s, Antibiotics, Toradol, etc

• Is the “positive NC” value of .3 too low? (Too many false negatives)

• A higher positive value (i.e. 0.7) may reduce “false positives” without significantly compromising patient safety.
Figure 4 Risk for KDIGO stage 2 to 3 AKI (A) and MAKE30 (B) as a function of urine [TIMP-2]/[IGFBP7]. Risk at each [TIMP-2]/[IGFBP7] value.
CONCLUSIONS

• An Acute Kidney Response Team (AKRT) triggered by NephroCheck and implementation of AKI stress modulators reduced the progression to AKI.

• The success of the AKRT is related to the successful formation and coordination of a multidisciplinary team.

• Future research is needed to determine the optimal NephroCheck threshold to trigger the AKRT team.
ERAS CARDIAC SOCIETY - MISSION

To optimize perioperative care of cardiac surgical patients through collaborative discovery, analysis, expert consensus, and dissemination of best practices.

• A research-based approach using selected pre-, intra-, and post-operative interventions in concert to optimize outcomes and the patient experience.

• ERAS programs have been a standard practice in Europe for many years and consist of up to 21 different components.

• These enhanced recovery programs have demonstrated significant reductions in LOS, blood loss, time to ambulation, and complications; and increases in patient satisfaction around pain.

• They and are being used in 95% of surgery patients in the UK.
We are a “Disruptive” Society

• Suggesting that standard accepted perioperative practices may be wrong:
 • Elective patients should be optimized with 4 weeks of prehab prior to surgery.
 (Especially those with malnutrition, anemia, frailty, ETOH/smoking)
 • Ending preop dietary restrictions
 • Wire cerclage versus rigid sternal fixation
 • Ambulation restrictions
 • Chest tube management strategies
 • Increased ambulation and less dietary restrictions

• “Perioperative Medicine”
 • Includes preoperative period
 • May be more important to outcomes than the intraoperative component of CT Surgery

• What is Patient-Centered “Value”?