Hypoxia-inducible factors in erythropoiesis, iron homeostasis and beyond

Volker H. Haase M.D.
Krick-Brooks Chair in Nephrology
Professor of Medicine
Vanderbilt University

@HIFpathway
Outline: HIF in erythropoiesis

- overview
- EPO synthesis in kidney and liver
- iron metabolism
- renal anemia
- HIF beyond erythropoiesis
Physiologic Responses to Hypoxia:
This happens when you go to high altitude

Andrew M. Luks J Appl Physiol 2015;118:509-519

©2015 by American Physiological Society
EPO and Hgb responses at high altitude

Faura et al., Blood, 1969

Abbrecht and Littel, J. Appl. Physiol., 1972
HIF controls the Hypoxic Induction of EPO

Hypoxia → HIF → EPO → sEPO → Erythropoiesis

Haase, VH
HIF regulates multiple processes: biological target complexity

Metabolism:
- Glycolysis (HIF-1)
- Fat metabolism (HIF-2)
- Adenylate kinase-3
- Carbonic anhydrase-9
- Glut-1 and -3
- Glycolytic enzymes (Hexokinase, LDH, PGK, etc.)
- Leptin

Iron metabolism/Erythropoiesis
- Ceruloplasmin
- EPO (HIF-2 > HIF-1)
- Transferrin
- Transferrin R

Epithelial Barrier Function
- ITF, MDR-1, CD73

ECM production/Cell migration
- CxCR4, c-met, CTGF, PAI-1, Procollagen prolyl hydroxylase-α1

Proliferation/Cell survival
- Cyclin G2, EPO
- Heme oxygenase 1
- IGF-2, IGFBP1, -2, -3
- NOS-2, NIP-3, p21
- TGF-β3, VEGF, WT1
- Indirect: c-Myc

Vasculogenesis/angiogenesis
- Heme oxygenase-2
- NOS-2, PAI-1
- VEGF, VEGF-R (FLT-1)

Transcription factors
- Ets-1, DEC-1/Stra13

HYPOXIA via HIF

Haase, VH
Regulation of HIF-α stability: molecular complexity

HIF: hypoxia-inducible factor

Haase, VH, AJP Renal 2006
Discovery of HIF-oxygen sensing

2OG-dependent dioxygenases: pharmacologic target complexity

PHD1, PHD2, PHD3, FIH

Loenarz and Schofield, Nature Chemical Biology, 2008
The HIF-EPO axis in kidney and liver
HIF-2 dependent regulation of EPO

EPO: erythropoietin; HIF: hypoxia-inducible factor.
EPO-producing cells in human kidneys

HIF-2 regulates the size of the REPC pool

Distinct interstitial cell populations regulate renal EPO production: cellular complexity

EPO: erythropoietin; PHD: prolyl-4-hydroxylase domain; REPC: renal EPO-producing cell.
The liver as EPO source: role of individual PHDs

EPO: erythropoietin; PHD: prolyl-4-hydroxylase domain.

ControlP13-L-KO
P23-L-KO
P12-L-KO
P13-L-KO
P23-L-KO
P123-L-KO

KDIGO
HIF and iron metabolism
HIF in iron metabolism

HIF-2 iron feedback via IRP

Fe-S Cluster Biogenesis
Iron Deficiency Phosphorylation

IRE
Hif-2α mRNA
Translational Activation

IRP1

Renal Epo mRNA
Serum EPO (pg/mL)

control
Irp1Δ

control
Irp1Δ

Epo
Pdgfβ

Epo+ cells/mm²

rbc 10⁹/ml

0.5 7 21 28 35 56 119 (d)
Key Points

- The hypoxic induction of EPO in the kidney and liver is HIF-2-dependent.
- Inactivation of PHD2 alone is sufficient to stimulate the production of renal EPO.
- There are at least two distinct populations of EPO-producing cells in the kidney that differ in their regulation of HIF-2 activity and EPO production.
- Inactivation of at least 2 PHD enzymes in the liver is required to stimulate erythropoiesis.
- HIF coordinates erythropoiesis with iron metabolism.
- Intracellular iron regulates HIF oxygen sensing.

EPO: erythropoietin; HIF: hypoxia-inducible factor; PHD: prolyl-4-hydroxylase domain.
HIF-PHD Inhibitors for renal anemia therapy:
overview of compounds and mechanism
Pathogenesis of Renal Anemia

EPO: erythropoietin.
HIF-PHD as pharmacologic target

\[\text{HIF-α} \]

2OG oxygenases

HIF-PHDs (PHD1, PHD2, PHD3)
HIF-PHI
chemical structures

2-Oxoglutarate (2OG)
MW: 146.1 g/mol

Dimethylxalylglycine (DMOG)
MW: 175.1 g/mol

FG-2216
MW: 280.7 g/mol

FG-4592 / Roxadustat
MW: 352.3 g/mol

GSK-1278863 / Daprodustat
MW: 393.4 g/mol

BAY-85-3934 / Molidustat
MW: 314.3 g/mol

AKB-6548 / Vadadustat
MW: 306.9 g/mol
Pharmacologic profiles of HIF-PHIs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Effective daily oral doses in phase II trials</th>
<th>Dosing Schedule</th>
<th>half-life</th>
<th>Plasma EPO (IU/L)</th>
<th>Metabolism</th>
<th>rel. activity KM (µm)</th>
<th>KDIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>daprodustat</td>
<td>5-25 mg (also examined 50 and 100 mg)</td>
<td>QD</td>
<td>~1-7 hrs</td>
<td>24.7 and 34.4, 82.4 b</td>
<td>CYP2C8 with minor CYP3A4</td>
<td>PHD3>PHD1>PHD2</td>
<td></td>
</tr>
<tr>
<td>(GSK-12278863)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>molidustat</td>
<td>25-150 mg (>75mg in DD-CKD)</td>
<td>QD</td>
<td>4-10 hrs</td>
<td>39.8 d</td>
<td>n.r.</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>(BAY 85-3934)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHD3>PHD1/PHD2</td>
<td></td>
</tr>
<tr>
<td>roxadustat</td>
<td>0.7-2.5 mg/kg</td>
<td>TIW</td>
<td>12-15 hrs</td>
<td>113 and 397, 130 f</td>
<td>CYP2C8</td>
<td>PHD1,2,3</td>
<td>0.027</td>
</tr>
<tr>
<td>(FG-4592, ASP1517)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vadadustat</td>
<td>150-600 mg</td>
<td>QD (TIW)</td>
<td>4.7-9.1 hrs</td>
<td>32 h</td>
<td>n.r.</td>
<td>PHD3>PHD1>PHD2</td>
<td></td>
</tr>
<tr>
<td>(AKB-6548, MT-6548)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
<td></td>
</tr>
</tbody>
</table>

Others:
- **Enarodustat** (JTZ-951, Japan Tabacco),
- **Desidustat** (Zyann1, Cadila Healthcare/Zydus Cadila),
- **TP0463518** (Taisho Pharmaceutical)

Sanghani and Haase, ACKD, 2019
HIF-PHI: mechanisms in renal anemia
Renal EPO-producing cells in CKD

CKD: chronic kidney disease; EPO: erythropoietin; REPC: renal EPO-producing cell.

HIF-Prolyl Hydroxylase Inhibition: potential adverse effects

- VEGF?
- Metabolic effects (glucose, cholesterol, fat metabolism, uric acid, FGF 23) ?
- Pulmonary artery pressure ?
- Systemic arterial blood pressure ?
- Effects on kidney disease progression ?
- Liver toxicity ?
- Pro-oncogenic potential ?
HIF activation:
potential applications in renal injury
Preclinical studies in AKI – evidence for renoprotection

<table>
<thead>
<tr>
<th>Reference</th>
<th>Approach</th>
<th>Cell type</th>
<th>Dose and time</th>
<th>Clinical outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matsumoto 2003</td>
<td>CoCl₂</td>
<td>systemic</td>
<td>2 mM CoCl₂ in drinking water, day −10, right nephrectomy and left renal IRI</td>
<td>reduction of tubulointerstitial damage, vimentin expression, inflammation, increase in Ho1, Glut1, and Vegf mRNA levels in rat kidneys 3 d post-op</td>
</tr>
<tr>
<td>Bernhardt 2006</td>
<td>0.1% CO</td>
<td>epithelial</td>
<td>CO exposure for 10 h prior to right-sided nephrectomy and left renal IRI</td>
<td>72 h after IRI, left kidneys from pretreated vs control rats had reduced tubular necrosis and apoptosis, and less macrophage infiltration</td>
</tr>
<tr>
<td>Bernhardt 2006</td>
<td>FG-4487</td>
<td>epithelial</td>
<td>Single dose (25 mg/kg i.p.) 6 h before right-sided nephrectomy and left renal IRI</td>
<td>72 h after ischemia, left kidneys from pretreated vs control rats had reduced tubular necrosis and apoptosis</td>
</tr>
<tr>
<td>Hill 2008</td>
<td>DMOG + global HIF KO</td>
<td>systemic</td>
<td>3 doses 8 mg i.p., 48 h and 6 h before IRI and 48 h after IRI</td>
<td>72 h after IRI, DMOG-treated mice had less tissue damage, apoptosis, and macrophage infiltration vs controls</td>
</tr>
<tr>
<td>Schley 2011</td>
<td>conditional KO of VHL in TAL</td>
<td>epithelial (TAL)</td>
<td>genetic model</td>
<td>Attenuation of proximal tubular injury, preservation of TAL function</td>
</tr>
<tr>
<td>Kapitsinou 2012</td>
<td>GSK1002083A</td>
<td>systemic</td>
<td>2 oral doses of GSK1002083A at 48 h and 6 h before renal IRI, or days 2 and 4 post IRI</td>
<td>GSK1002083A pretreatment (but not posttreatment) preserved kidney function and prevented fibrosis, inflammation, and anemia in mice 21 d post IRI</td>
</tr>
<tr>
<td>Fähling 2013</td>
<td>inducible KO of VHL</td>
<td>pan-epithelial</td>
<td>tetracycline-inducible genetic model</td>
<td>HIF-mediated renoprotection in VHL KO mice via metabolic shift toward glycolysis in tubules at day 1 after rhabdomyolysis</td>
</tr>
<tr>
<td>Kapitsinou 2014</td>
<td>GSK1002083A</td>
<td>endothelial</td>
<td>genetic model</td>
<td>3 oral doses: 2 d before IRI, 6 h before IRI, 2 d after IRI</td>
</tr>
<tr>
<td>Yang 2018</td>
<td>FG-4592 (Roxadustat)</td>
<td>epithelial</td>
<td>10 mg/kg/day i.p., 48 h prior to cisplatin-induced AKI</td>
<td>GSK1002083A attenuated renal injury at day 3 after IRI in wild-type mice but not in mice with inactivation of endothelial HIF-2α</td>
</tr>
</tbody>
</table>
Potential mechanisms of HIF-dependent
“Ischemic preconditioning”

Kapitsinou and Haase., AJP Renal, 2015
Key Points

- There is strong preclinical evidence for HIF-induced protection from acute ischemic injury warranting further investigation in patients.

- HIF protects from renal ischemia-reperfusion injury and transition to CKD.

- Are currently used dosing regimen sufficient to afford cytoprotection (Dapro trial in PVD failed)?

- The effects of HIF activation on chronic kidney injury are controversial. Preclinical studies indicate strong cell type and context dependence.
HIF oxygen sensing
cardiovascular disease

KDIGO
Cardiovascular risk in CKD: is HIF-PHI therapy beneficial?

Gansevoort RT et al., Lancet, 2013
Altitude reduces all-cause mortality in incident dialysis

Table 2. Unadjusted and Adjusted Relative Mortality in US Patients Receiving Dialysis

<table>
<thead>
<tr>
<th>Residential Elevation, m</th>
<th><76</th>
<th>76-609</th>
<th>610-1218</th>
<th>1219-1828</th>
<th>>1828</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of deaths</td>
<td>177,412</td>
<td>238,214</td>
<td>12,046</td>
<td>7,380</td>
<td>1,720</td>
</tr>
<tr>
<td>Mortality rate (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per 1000 person-years</td>
<td>220.1 (219.1-221.2)</td>
<td>221.2 (220.3-222.1)</td>
<td>214.6 (210.3-218.5)</td>
<td>184.9 (180.7-189.1)</td>
<td>177.2 (169.0-185.7)</td>
</tr>
<tr>
<td>Unadjusted</td>
<td>1.0 [Reference]</td>
<td>1.00 (1.00-1.01)</td>
<td>0.97 (0.96-0.99)</td>
<td>0.85 (0.83-0.87)</td>
<td>0.81 (0.78-0.85)</td>
</tr>
<tr>
<td>Adjusted for age, sex, race, Medicaid coverage</td>
<td>1.0 [Reference]</td>
<td>0.99 (0.98-1.00)</td>
<td>0.95 (0.93-0.97)</td>
<td>0.85 (0.83-0.87)</td>
<td>0.83 (0.79-0.87)</td>
</tr>
<tr>
<td>Additionally adjusted for comorbidities, inability to ambulate, inability to transfer, baseline rEPO use, and dialysis modality</td>
<td>1.0 [Reference]</td>
<td>0.97 (0.97-0.98)</td>
<td>0.96 (0.94-0.97)</td>
<td>0.86 (0.84-0.88)</td>
<td>0.85 (0.81-0.89)</td>
</tr>
<tr>
<td>Additionally adjusted for BMI, estimated GFR, hemoglobin, and serum albumin</td>
<td>1.0 [Reference]</td>
<td>0.97 (0.96-0.98)</td>
<td>0.93 (0.91-0.95)</td>
<td>0.88 (0.84-0.91)</td>
<td>0.85 (0.79-0.92)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CI, confidence interval; GFR, glomerular filtration rate; rEPO, recombinant human erythropoietin.
Metric conversion factor: to convert meters to feet, divide by 0.3.
All analytical models were stratified by year of initiation of dialysis treatment.
Restricted to the 496,984 patients (91.8% of the overall sample) for whom complete information on weight, height, serum creatinine, hemoglobin, and albumin concentrations were available.

Winkelmayer et al., JAMA, 2009
HIF activation in CVD – importance of timing and duration

Minamashima et al., Blood 2008

Tanaka and Eckardt, Seminars in Nephrology, 2018
Key points

- HIF activation has the potential to reduce cardiovascular morbidity and mortality in CKD patients

- HIF-PHIs may have anti-inflammatory effects

- Several cardiovascular safety concerns have not been addressed yet in long-term studies

- Additional clinical studies are needed

- Acute effects may be protective – timing is critical

- Chronic HIF activation results in organ dysfunction