Potassium Management

Prof Mario Cozzolino, MD, PhD, FERA, FASN
Director, Renal Division, ASST Santi Paolo e Carlo, Milan
Dept. of Health Sciences, University of Milan
Disclosure of Interests

....received commercial/research assistance, and financial sponsorship to attend conferences, advisory boards and clinical trials from Vifor Pharma and AstraZeneca, and several "CKD-MBD treatment" companies
Today's talk......

- Treatment options
 - What about the foods?
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia
 - What is on the horizon to lower potassium?
- Unmet need of hyperkalemia in CKD: How would you manage the patient?

RAASi = Renin Angiotensin Aldosterone System inhibitors
MRA = Mineralocorticoid Receptor Antagonists
Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Catherine M. Clase1,2, Juan-Jesus Carrero3, David H. Ellison4, Morgan E. Grams5,6, Brenda R. Hemmelgarn7,8, Meg J. Jardine9,10, Csaba P. Kovacs11,12, Gregory A. Kline13, Gregor Lindner14, Gregorio T. Obrador15, Biff F. Palmer16, Michael Cheung17, David C. Wheeler18, Wolfgang C. Winkelmayr19 and Roberto Pecoits-Filho20,21; for Conference Participants22

A multidisciplinary group of researchers and clinicians met in October 2018 to identify evidence and address controversies in potassium management. Here we provide our overview of potassium homeostasis in health and disease and guidance for evaluation and management of dyskaleeas in the context of kidney diseases, and indicate research priorities.
Hyperkalaemia is prevalent in specific patient populations, such as CKD and heart failure and those prescribed key drug classes.

- CKD (frequency 40–50%)
- Chronic heart failure (frequency up to 50%)
- Diabetes mellitus (frequency up to 15%)
- Resistant hypertension (frequency up to 20%)

*Among patients prescribed add-on MRA treatment

CKD, chronic kidney disease; HF, heart failure; MRA, mineralocorticoid receptor antagonist
Todays talk......

- Treatment options
 - **What about the foods?**
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia
 - What is on the horizon to lower potassium?
 - Unmet need of hyperkalemia in CKD: How would you manage the patient?

RAASi = Renin Angiotensin Aldosterone System inhibitors
MRA = Mineralocorticoid Receptor Antagonists
Dietary measures

- Restrict their intake of high-potassium foods (>250 mg (6mmol) per 100 g)
- Maintain a low-potassium diet (potassium intake of ≤3 g per day)
Which food has the highest potassium content per usual serve?

1) Banana
2) Tomato (3 slices)
3) Hot chips (small)
4) Iced-coffee (250mL)
5) Beans (1/2 cup)
<table>
<thead>
<tr>
<th>Item</th>
<th>mmol potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>9</td>
</tr>
<tr>
<td>Mandarin</td>
<td>3</td>
</tr>
<tr>
<td>Orange</td>
<td>5</td>
</tr>
<tr>
<td>Tomato (3 slices)</td>
<td>3</td>
</tr>
<tr>
<td>Mango (1 cheek)</td>
<td>5</td>
</tr>
<tr>
<td>Nectarine</td>
<td>9</td>
</tr>
<tr>
<td>Peach</td>
<td>7</td>
</tr>
<tr>
<td>Grapes</td>
<td>6</td>
</tr>
<tr>
<td>Mashed potato</td>
<td>10</td>
</tr>
<tr>
<td>Hot chips (small)</td>
<td>12</td>
</tr>
<tr>
<td>Juice (250mL)</td>
<td>10</td>
</tr>
<tr>
<td>Milkshake (250mL)</td>
<td>10</td>
</tr>
<tr>
<td>Ice-coffee (250mL)</td>
<td>10</td>
</tr>
<tr>
<td>Crisps (small packet)</td>
<td>15</td>
</tr>
<tr>
<td>Apple</td>
<td>4</td>
</tr>
<tr>
<td>Pear</td>
<td>4</td>
</tr>
<tr>
<td>Strawberries</td>
<td>5</td>
</tr>
<tr>
<td>Watermelon</td>
<td>6</td>
</tr>
<tr>
<td>Carrot (1/2 cup)</td>
<td>4</td>
</tr>
<tr>
<td>Beans (1/2 cup)</td>
<td>1</td>
</tr>
<tr>
<td>Zucchini (1/2 cup)</td>
<td>4</td>
</tr>
</tbody>
</table>

Potassium: 1mmol = 39mg
Lowering Potassium Levels

- It’s not all about bananas…
- Anyone can lower a patient’s potassium, the dietitian’s role, is to assess a patient’s diet and **negotiate changes** while:
 - meeting patients preferences,
 - keeping the diet healthy
 - maintaining safe potassium levels
- The hospital low potassium diets are very limiting
What is the normal potassium intake?

1. 30-50 mmol/d
2. 50-75 mmol/d
3. 75-100 mmol/d
4. 100-150 mmol/d
5. Don’t know!
What is the normal potassium intake?

75-100 mmol/L

How do you assess potassium intake?
Table 1 | Studies associating potassium intake, CKD outcomes, and mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Dietary K⁺ assessment</th>
<th>Outcome definitions</th>
<th>Factors associated with higher K⁺ intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araki et al., 2015[^2]</td>
<td>623 Japanese patients with diabetes and eGFR >60 ml/min per 1.73 m² enrolled between 1996-2003 and followed up until 2013</td>
<td>Estimated from a single baseline 24-h urine collection</td>
<td>eGFR ↓ ≥50% or progression to CKD G4 or annual rate of eGFR decline</td>
<td>↓ risk of both outcomes Slower rate of annual eGFR decline</td>
</tr>
<tr>
<td>Smyth et al., 2016[^1]</td>
<td>Post hoc analysis of ONTARGET and TRANSCEND studies; > 20,000 patients from 18 countries with vascular disease or diabetes with end-organ damage</td>
<td>Estimated 24-h urine K⁺ from a single urine sample</td>
<td>eGFR ↓ ≥30% or CD, or eGFR ↓ ≥40% or CD, or rapid progression, or doubling of Scr or Cr, or progression of proteinuria</td>
<td>↓ risk of CKD progression</td>
</tr>
<tr>
<td>Kieneker et al., 2016[^3]</td>
<td>5315 Dutch participants aged 28 to 75 yr in the PREVEND study and followed up for a median of 10.3 yr</td>
<td>Two 24-h urine collections at baseline and midway during follow-up</td>
<td>CKD incidence</td>
<td>↓ risk of incident CKD</td>
</tr>
<tr>
<td>Smyth et al., 2016[^3]</td>
<td>544,655 participants in the NIH-AARP Diet and Health Study, aged 51-71 yr</td>
<td>FFQ to assess K⁺ intake over the preceding year</td>
<td>Death due to renal causes or need for dialysis</td>
<td>↓ risk of both kidney outcomes</td>
</tr>
<tr>
<td>Leosnberg-Yoo et al., 2017[^4]</td>
<td>Post hoc analysis of MDRD study; 812 patients aged 15-70 yr with CKD G2-G4</td>
<td>Estimated from 24-h urine collection at baseline and at multiple time points</td>
<td>Initiation of chronic dialysis or kidney transplantation (kidney replacement therapy) Death from all causes</td>
<td>No association with kidney replacement therapy Association with ↓ risk of death</td>
</tr>
<tr>
<td>Mirrison et al., 2016[^5]</td>
<td>1780 participants in the Tehran Lipid and Glucose study and followed up for 6.3 yr</td>
<td>Validated 168-item FFQ</td>
<td>CKD incidence</td>
<td>No association</td>
</tr>
<tr>
<td>He et al., 2016[^6]</td>
<td>3939 participants aged 21-74 yr with CKD (eGFR 20-70 ml/min per 1.73 m²) in the CRC study</td>
<td>Estimated from 24-h urine collection at baseline and at years 1 and 2</td>
<td>Composite of ESKD or halving of GFR Death from all causes</td>
<td>↑ risk of CKD progression No association with risk of death</td>
</tr>
<tr>
<td>Noori et al., 2010[^7]</td>
<td>224 chronic HD patients from the NIED Study</td>
<td>Estimated 24-h urine K⁺ from FFQ</td>
<td>Death from all causes</td>
<td>↑ risk of death only when comparing extreme intakes</td>
</tr>
<tr>
<td>Eikenga et al., 2016[^8]</td>
<td>Prospective cohort of 705 stable kidney transplant recipients</td>
<td>A single 24-h urine collection and FFQ</td>
<td>Graft failure Death from all causes</td>
<td>↓ risk of graft failure and death</td>
</tr>
<tr>
<td>Kim et al., 2019[^9]</td>
<td>1821 participants aged 20-75 yr with CKD G1-G6 (nondystolic) in the KDIGO Study</td>
<td>24-hour urine collection at baseline spot urine</td>
<td>Composite of GFR ↓ ≥50% or ESKD</td>
<td>↓ risk of CKD progression</td>
</tr>
</tbody>
</table>

Direct evidence in support of the current recommendation for restricting dietary potassium in patients with CKD was lacking; however, we did not find evidence that increased potassium intake, or liberalization of potassium restrictions, in patients with advanced CKD is safe. While we acknowledge that dietary potassium restriction is a valid strategy to treat acute hyperkalemia, we hypothesize that potassium restriction as a general strategy to prevent hyperkalemia in persons with CKD may deprive patients of the beneficial effects associated with potassium-rich diets. We recommend that interventional trials be conducted to clarify optimal dietary potassium advice for patients with...
<table>
<thead>
<tr>
<th>What we know</th>
<th>What we think</th>
<th>Future research</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺-rich diets are consistent with fruit and vegetable-rich healthy dietary patterns.</td>
<td>Generalized dietary K⁺ restriction in people with CKD may deprive them from other beneficial effects and nutrients of K⁺-rich diets.</td>
<td>• Investigate the effect of dietary K⁺ restriction in CKD on circulating levels.</td>
</tr>
<tr>
<td>K⁺ supplementation, at a general population level, reduces blood pressure and lowers the risk of stroke.</td>
<td></td>
<td>• Investigate the effect of fruit- and vegetable-rich diets in CKD.</td>
</tr>
<tr>
<td>In people with CKD, estimations of dietary K⁺ correlate poorly with circulating K⁺.</td>
<td></td>
<td>• Develop new methods and validate existing methods to estimate dietary K⁺ intake in people with CKD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evaluate the impact of dietary K⁺ on serum concentration in people with CKD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evaluate the effects of dietary K⁺ restriction in people with CKD on clinically important outcomes, including harms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evaluate the effects of unrestricted fruit/vegetable intake on the risk of hyperkalemia in people with advanced CKD or who are undergoing dialysis.</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; K⁺, potassium.
Todays talk......

- Treatment options
 - What about the foods?
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia
 - What is on the horizon to lower potassium?
- Unmet need of hyperkalemia in CKD: How would you manage the patient?

RAASi = Renin Angiotensin Aldosterone System inhibitors
MRA = Mineralocorticoid Receptor Antagonists
Figure 4 | Severity of acute hyperkalemia: expert opinion-based risk classification. *5.0 or upper limit of normal range. ECG, electrocardiogram.
K+ > 6.0 mmol/l

Place on cardiac monitor 12-lead ECG

ECG changes

<table>
<thead>
<tr>
<th>Serum potassium</th>
<th>Expected ECG abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5–6.5 mmol/l</td>
<td>Tall, “peaked” T waves with narrow base, best seen in precordial leads</td>
</tr>
<tr>
<td>6.5–8.0 mmol/l</td>
<td>Peaked T waves, Prolonged PR interval, Decrease amplitude of P waves, Widening of QRS complex</td>
</tr>
<tr>
<td>>8.0 mmol/l</td>
<td>Absence of T wave, Intraventricular blocks, fascicular blocks, bundle branch blocks, QRS axis shift, Progressive widening of QRS resulting in bizarre morphology, “Sine wave” patterns (sinoventricular rhythm), VF, asystole</td>
</tr>
</tbody>
</table>

High risk for hyperkalemia or Point of care K+ > 6.0 mmol/l or Lab repeat K+ > 6.0 mmol/l

Yes

No
Table 5 | Future questions for hyperkalemia research

Acute hyperkalemia
- Understanding the burden of disease
- Testing the efficacy of acute management

Understanding the measurement properties of ECG in the prediction of clinical outcomes
- Testing the efficacy of noninvasive screening for hyperkalemia

- Determine the prevalence of hyperkalemia in patients with acute kidney injury
- Compare the efficacy and safety of calcium chloride and calcium gluconate for management of acute hyperkalemia with ECG changes
- Evaluate the efficacy of loop diuretics for treatment of acute hyperkalemia
- Determine the ECG changes that warrant administration of intravenous calcium salts
- Evaluate use of artificial intelligence and smart phone technology for noninvasive monitoring to detect hyperkalemia in the outpatient setting
Chronic hyperkalemia

Testing the efficacy and harms of dietary intervention
Testing the efficacy of newer agents for potassium reduction in populations not well represented in current trials

Evaluating the risks and benefits of maintaining and optimizing RAAS blockade despite hyperkalemia
Preventing clinical events arising from hyperkalemia
Preventing health service utilization arising from hyperkalemia
Testing the impact of the newer agents on the patient experience using patient reported outcomes
Testing the relative role of the newer agents
Understanding the dynamics of potassium

- Including PROs and clinically important cardiorenal outcomes, as well as serum potassium concentration
- In ESKD people receiving maintenance hemodialysis
- In people with functioning kidney transplants, test efficacy and harms, investigate impact on immunosuppressant levels
- In diverse populations (differing by clinical context, ethnicity, or diet)
- In people with type 4 RTA and normal or reduced eGFR
- In people with heart failure for cardiovascular outcomes
- In people at risk of progression for preventing CKD progression
- In people with hyperkalemia (e.g., diabetes with type 4 RTA, advanced CKD, ESKD receiving hemodialysis) for survival and prevention of arrhythmias
- Reduction of hospitalizations, emergency department presentations, investigations, and management arising as a response to hyperkalemia
- PROs for standard of care vs. newer strategies
- Gut symptoms, pill burden, illness intrusiveness (medication timing away from binders, monitoring, possible diet liberalization), peripheral neuropathy
- Important to compare with placebo and with SPS (lower cost; wide experience)
- In broad populations head-to-head trials, including comparison with SPS (lower cost; wide experience)
- Directly assessing and modeling the impact of ability to continue RAAS blockade
- Monitoring frequency; novel continuous monitoring devices may provide data for modeling studies to define optimal monitoring frequencies
- Deprescribing trials

CKD, chronic kidney disease; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; PROs, patient reported outcomes; RAAS, renin-angiotensin-aldosterone system; RTA, renal tubular acidosis; SPS, sodium polystyrene sulfonate.
Table 6 | Approaches to the management of chronic hyperkalemia

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Dietary potassium restriction | Reliant on lifestyle change
Uncertainty on degree and reliability of response
Poor evidence base to support the practice
Financial cost of special diets
Practical issues in implementation
Potential for harm because of impact of diet on intake of other beneficial nutrients, healthy dietary pattern
Potential for harm through loss of enjoyment in food and impact on social activities |
| Permissive approach (no additions or changes to management despite awareness of hyperkalemia) | The extent of practice poorly documented
Potentially could be tested in randomized trials given the uncertainty on benefits and harms of approaches based on tolerance of different potassium thresholds |
| Discontinuation of medications elevating potassium (e.g., RAAS inhibitors) | Common strategy
Effect on outcomes unknown¹⁶⁸,²⁰⁴ |
| Use of potassium-wasting diuretics | Dependent on kidney function; RCT evidence of no impact on potassium concentrations in people on PD with residual kidney function²¹³; small pre-post studies suggest that metolazone but not thiazides may be kaliuretic in patients with GFR < 20 ml/min per 1.73 m²²¹⁴,²¹⁵
Degree and predictability of response uncertain
Clearest role when diuresis or an additional antihypertensive agent is also a desired effect
In between-study comparisons, high-dose furosemide was more kaliuretic than metolazone in patients with GFR < 20 ml/min per 1.73 m²²¹⁴,²¹⁶ |
Mineralocorticoid agonists
- Dependent on kidney function
- Weak (small observational studies and clinical trials) and inconsistent data about efficacy \(^{217,218}\)
- Possibly harmful, given the hypothesis that mineralocorticoid antagonism may reduce CV outcomes in ESKD

Gastrointestinal potassium wasting
- Potential management option
- Scant evidence
- One small pre-post study \(^{219}\) found that increasing the number of stools from 1 to 2–4 per day with laxatives lowered potassium from mean 5.9 ± 0.2 to 5.5 ± 0.2 mmol/l without inducing diarrhea

Correction of coincident acidosis
- No evidence

Use of low potassium dialysate
- Observational evidence of increased risk of mortality, arrhythmias and emergency department visits at dialysate potassium concentration <2 mmol/l and with higher serum-dialysate gradients (see text)

Older potassium binder: SPS
- Concern about rare but serious adverse gastrointestinal effects from postmarketing studies
- FDA warning in 2009 against use with sorbitol \(^{220}\)
- Use only in patients with normal bowel function
- Limited randomized evidence for efficacy
- Binds other medications; other oral medications to be taken at least 3 hours before or 3 hours after SPS, 6 hours in patients with gastroparesis \(^{221}\)

Newer potassium binders: patiromer, zirconium cyclosilicate
- Evidence for efficacy in reducing hyperkalemia incidence of up to 12 mo
- Evidence of adverse effects for exposure of up to 12 mo
- Lack of large-scale postmarketing studies
- Patiromer binds other medications; other oral medications to be taken at least 3 hours before or 3 hours after patiromer \(^{222}\)
- Zirconium cyclosilicate affects the absorption of drugs whose bioavailability is dependent on gastric pH; these oral medications should be taken at least 2 hours before or 2 hours after zirconium cyclosilicate \(^{223}\)

CV, cardiovascular; ESKD, end-stage kidney disease; FDA, US Food and Drug Administration; GFR, glomerular filtration rate; PD, peritoneal dialysis; RAAS, renin-angiotensin-aldosterone system; RCT, randomized controlled trial; SPS, sodium polystyrene sulfonate.

Conference participants were unable to provide evidence-based recommendations or suggestions on preferential strategies because of a lack of evidence for most of the strategies, the absence of evidence on comparative efficacy of alternative strategies, and the potential for harm with at least some of them.

Zirconium cyclosilicate interferes with the absorption of drugs that exhibit pH-dependent bioavailability, e.g., atorvastatin; theazole antifungals ketoconazole, itraconazole, and posaconazole; dabigatran; furosemide; some drugs for HIV (atazanavir, elvitegravir, indinavir, ritonavir, saquinavir, raltegravir, ledipasvir, and nelipivirine); and the tyrosine kinase inhibitors (erlotinib, dasatinib, and nilotinib). We were unable to identify a comprehensive reference permitting clinicians to identify whether an individual drug has gastric pH-dependent bioavailability. In 2018 the FDA initiated a process to improve approaches to the assessment of this issue. \(^{224}\)
Reduce the ACE-I/ARB

- Problematic
- Pre 2013: Combination ACE-I and ARBs
- Post 2014: ACE-I or ARB with spironolactone
- 2015: restore the combination therapy: And what about spironolactone?

When do you get concerned about potassium?

- Are you cardiology or nephrology?
- Acute or chronic?
- Background CKD

5.5 vs 6.0 mEq/L
Are We Optimally Managing Patients With High Potassium?

- Change RAASi?
- Treat high K?
- Do nothing?
Today's talk......

- Treatment options
 - What about the foods?
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia

- What is on the horizon to lower potassium?

- Unmet need of hyperkalemia in CKD: How would you manage the patient?
Current Treatment Options for Hyperkalemia are Limited

- Most acute therapies do not remove excess potassium, and impractical in outpatient setting
 - IV calcium, sodium bicarbonate, insulin and dextrose, nebulized beta-adrenergic agonists
- Dietary potassium restriction met by non-adherence, limits healthy food choices
- Sodium polystyrene sulfonate (SPS)
 - Uncertain efficacy - no rigorous clinical trials
 - Poorly tolerated
 - Reports of serious intestinal toxicity

There is a clinical need for a hyperkalemia treatment that is effective, safe and well-tolerated
Key Characteristics of Old and New K⁺-Binding Agents

<table>
<thead>
<tr>
<th>MOA¹</th>
<th>Sodium Polystyrene Sulphonate</th>
<th>Patiromer</th>
<th>Sodium Zirconium Cyclosilicate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonspecific cation binding in exchange for sodium</td>
<td>Patiromer is a polymer exchange resin</td>
<td>Selective K⁺ binding in exchange for sodium and hydrogen</td>
</tr>
<tr>
<td>Time to Normokalemia</td>
<td>Unconfirmed (generally hours to days)</td>
<td>Within 1 week²</td>
<td>Within 24 hours for 84% of patients³</td>
</tr>
<tr>
<td>Onset of action</td>
<td>Unknown</td>
<td>7 hours after first dose⁴</td>
<td>1 hour following the first dose³</td>
</tr>
<tr>
<td>Drug–drug Interactions</td>
<td>With antacids, laxatives, digitalis, sorbitol, lithium, and thyroxine⁵</td>
<td>FDA: Must be taken 3 hours apart from other oral drugs⁶</td>
<td>Should be given 2 hours apart from oral medication with gastric pH-dependent bioavailability⁷</td>
</tr>
<tr>
<td>Location of K⁺ Binding</td>
<td>Colon</td>
<td>Predominantly distal drugs</td>
<td>Likely entire GI tract</td>
</tr>
<tr>
<td>Safety / Tolerability</td>
<td>Associated with: •Safety and tolerability concerns⁸ •Electrolyte disturbances</td>
<td>•Hypomagnesaemia⁹ •GI side effects, e.g. •mild-to-moderate constipation</td>
<td>•Mild-to-moderate GI effects¹⁰ •Oedema</td>
</tr>
</tbody>
</table>

FDA, US Food and Drug Administration; GI, gastrointestinal; MOA, mechanism of action; SPS, sodium polystyrene sulphonate; SZC, sodium zirconium cyclosilicate

Today's talk……

- Treatment options
 - What about the foods?
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia
 - What is on the horizon to lower potassium?

- Unmet need of hyperkalemia in CKD: How would you manage the patient?

RAASi = Renin Angiotensin Aldosterone System inhibitors
MRA = Mineralocorticoid Receptor Antagonists
How would you manage the patient?

- Dietary restriction
- Reduce the dose of RAASi
- Correct the metabolic acidosis
- Increase diuretics
- Maybe regular SPS/or fludrocortisone
How would you manage the patient?

- Dietary restriction
- Reduce the dose of RAASi
- Correct the metabolic acidosis
- Increase diuretics
- Maybe regular SPS/or fludrocortisone
- Maintain the diet
- Maintain the maximum/optimal dose of RAASi
- Maintain the diuretics
- Start one of the newer potassium lowering binders
Today's talk......

- Treatment options
 - What about the foods?
 - Sub-optimal RAASi and MRA therapy due to fear of hyperkalemia
 - What is on the horizon to lower potassium?
- Unmet need of hyperkalemia in CKD: How would you manage the patient?

RAASi = Renin Angiotensin Aldosterone System inhibitors
MRA = Mineralocorticoid Receptor Antagonists