

A NEW ERA OF GDMT: ARE WE WITNESSING A CONVERGENCE OF GDMT FOR HEART FAILURE AND CKD?

Dr Brendon Neuen MBBS MSc PhD FRACP FASN

Staff Specialist Nephrologist & Director, Kidney Trials | Royal North Shore Hospital

Senior Research Fellow | The George Institute for Global Health

DISCLOSURES

- Consultancy: AstraZeneca, Alexion, Bayer, Boehringer & Ingelheim, Cambridge Healthcare Research, Novo Nordisk, Travere Therapeutics, Dedham Group
- Speaker honoraria: AstraZeneca, Boehringer & Ingelheim, Cornerstone Medical Education, The Limbic, Medscape, American Diabetes Association, Renal Society of Australasia
- Trial/consortium steering committees: SMART-C, AstraZeneca, Bayer, CSL Behring
- Grants: National Health and Medical Research Council, Medical Research Future Fund, Ramaciotti Foundation (all Australian)

All honoraria paid to my institution

ARE WE WITNESSING A CONVERGENCE OF GDMT FOR HEART FAILURE AND CKD?

Yes and no...

Key elements of GDMT are shared across heart failure and CKD

- ACEi/ARB
- SGLT2 inhibitor
- Non-steroidal MRA
- GLP-1RA

- ACEi/ARB/ARNI
- β-blocker
- Steroidal MRA
- SGLT2 inhibitor

GDMT FOR ONE CONDITION CAN DELAY OR PREVENT ONSET OF THE OTHER

ARNI and SGLT2i slow kidney disease progression in HF

SGLT2I AND NS-MRA REDUCE HF IN CKD

SGLT2i better Placebo better

SMART-C 🖗

	Cardiovascular death or hospitalisation for heart failure*					
	Mean baseline eGFR, mL/min per 1·73m²	Events/partici	pants		RR (95% CI)	
		SGLT2i	Placebo			
Diabetes						
High atherosclerotic				10.0		
ardiovascular risk trials	80	1490/24563	1232/18005		0.80 (0.74-0.86)	
Stable heart failure trials†	61	923/5046	1154/5037	-=	0.77 (0.71-0.84)	
Chronic kidney disease trials	45	643/10474	847/10457	-	0.74 (0.66-0.82)	
Subtotal: diabetes	67	3056/40691	3233/34113	0	0.77 (0.73-0.81)	
No diabetes				1		
Stable heart failure trials†	64	710/5316	890/5322	- -	0.78 (0.70-0.86)	
Chronic kidney disease trials	40	50/2476	53/2491		- 0.95 (0.65-1.40)	
Subtotal: no diabetes	56	760/7792	943/7813	\diamond	0.79 (0.72-0.87)	
Total: overall	65	3816/48483	4176/41926	\diamond	0.77 (0.74-0.81)	
			0.50	0.75 1.00 1.25	 1·50	

FIDELITY

NDPH Renal Studies Group & SMART-C The Lancet 2022

Filippatos G et al. JACC HF 2022

ARNI & SGLT2I ATTENUATE GFR DECLINE IN HF

DAPA-HF Jhund P et al. Circulation 2021

NEWER COMPONENTS OF GDMT CAN ENHANCE THE TOLERABILITY OF RAS BLOCKADE AND MRA

Heart Failure

SGLT2i may enable persistent <u>MRA</u> use in HF

ARNI may enable persistent <u>MRA</u> use in HF

Chronic Kidney Disease

SGLT2i enables persistent use of <u>RASi</u> in CKD

SGLT2i may enable persistent use of <u>ns-MRA</u> in CKD

SGLT2i may facilitate safer use of <u>ETA-RA</u> in CKD

SGLT2I REDUCES HYPERKALEMIA (K>6.0 MMOL/L)

			Event 1000 pa	s per atient-		
			yea	irs		Hazard ratio
Study	SGLT2i	Placebo	SGLT2i	Placebo		with 95% CI
CANVAS Program	137/5795	85/4347	8.2	9.2		0.89 [0.67, 1.17]
CREDENCE	121/2202	154/2199	21.6	27.9		0.77 [0.61, 0.98]
DAPA-CKD [†]	159/1455	179/1451	56.9	65.3		0.88 [0.71, 1.09]
DAPA-HF [‡]	36/2364	51/2364	11	16		0.64 [0.42, 0.99]
DECLARE-TIMI 58	53/8582	78/8578	1.6	2.3	——	0.67 [0.47, 0.95]
EMPA-REG OUTCOME	216/4687	124/2333	17.2	20.5	∎	0.83 [0.67, 1.04]
EMPEROR-Reduced [‡]	42/1811	57/1824	22	30		0.70 [0.47, 1.04]
VERTIS-CV	291/5493	157/2745	18.7	21.2		0.90 [0.74, 1.09]
Overall [p<0.001]					•	0.82 [0.75, 0.90]
[I ² =0%, P-heterogeneity=0	.65]					
				0.	4 0.6 0.8	1 1.2 1.6 2
				Favor	s SGLT2 inhibitor	Favors placebo

SMART-C 🖤

Neuen BL et al. Circulation 2022

SGLT2I REDUCES AKI AND HOSPITALISATIONS

Acute kidney injury

SMART-C

Heterogeneity by diabetes status: p=0.12

NDPH Renal Studies Group & SMART-C The Lancet 2022

EMPA-KIDNEY: All-cause hospitalization

Subgroup		Empagliflozin Events / 100 pt yrs	Placebo Events / 100 pt yrs	Hazard Ratio (95% Cl		tio (95% Cl)
Diabetes	Yes	31.2	36.7		0.86	(0.75-0.98)
	No	19.1	22.6	-	0.86	(0.74–0.99)
	<30	32.0	36.3		0.88	(0.75-1.03)
eGFR (mL/min/1.73m ²)	≥30 <45	22.3	27.3		0.81	(0.69-0.94)
	≥45	18.3	21.3		0.91	(0.72-1.14)
UACR (mg/g)	<30	24.7	30.8		0.80	(0.65–0.99)
	≥30 ≤300	24.6	30.5		0.83	(0.69-0.99)
	>300	24.9	27.9	-8-	0.89	(0.78–1.02)
Prior CVD	Yes	37.8	49.1		0.78	(0.66–0.93)
	No	20.2	21.8	-	0.92	(0.82-1.04)
All participants		24.8	29.2		0.86	(0.78-0.95)

Preiss D et al. AHA 2022

Effect of SGLT2 inhibitors on discontinuation of RAS blockade: A joint analysis of the CREDENCE and DAPA-CKD trials

Conclusion In patients with albuminuric CKD, SGLT2 inhibitors facilitate persistent use of RAS blockade.

Fletcher RA... Neuen BL J Am Soc Nephrol 2023 doi:10.1681/ASN.00000000000248

SGLT2I REDUCES MRA DISCONTINUATION IN HFREF

Ferreira et al. JACC 2022

INCIDENCE OF HYPERKALEMIA LOWER WITH ARNI VS. ACEI IN HFREF

Desai AS et al. JACC HF 2022

ARNI REDUCES **MRA** DISCONTINUATION IN HFREF

Bhatt AS et al. Eur J Heart Fail 2022

SGLT2I REDUCES DIURETIC INITIATION/INTENSIFICATION IN CKD & HF

DELIVER

CANVAS/CREDENCE

Oral Diuretic Intensification

Chatur S et al. Circulation 2023

Chatur S... Neuen BL (unpublished)

New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction.

OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY

CONTEMPORARY KIDNEY GDMT IN 2024

4 PILLARS OF GDMT IN DIABETES & CKD

4 PILLARS OF GDMT IN DIABETES & CKD

HEART FAILURE EVENT-FREE SURVIVAL WITH COMBINATION GDMT IN DIABETES & CKD

Neuen BL et al. Circulation 2024

HEART FAILURE EVENT-FREE SURVIVAL WITH COMBINATION GDMT IN DIABETES & CKD

Neuen BL et al. Circulation 2024

HEART FAILURE EVENT-FREE SURVIVAL WITH COMBINATION GDMT IN HFREF

Vaduganathan M et al. The Lancet 2020

THEORETICAL APPROACHES TO IMPLEMENTING THE "4 PILLARS" IN CKD

TRADITIONAL APPROACH

RAS blockade, add SGLT2i, re-assess in 3-6 months, add ns-MRA, consider GLP-1 RA Limitations: Ignores excess early cardiovascular risk, very high risk of therapeutic inertia

RAPID SEQUENCE APPROACH

Rapid sequence implementation of "kidney GDMT" Considerations: Assumes all patients with CKD are at equally high-risk, cost-effectiveness uncertain, and safety largely untested

ACCELERATED RISK-BASED APPROACH

Identify patients at highest risk using validated risk score, prioritise accelerated implementation of combination guideline directed medical therapy

Appeal: Match intensity of treatment to risk, prioritise patients likely to obtain greatest absolute benefits

Neuen BL, Tuttle KR & Vaduganathan M. Circulation 2024 (in press)

RATIONALE FOR UP FRONT COMBINATION THERAPY: CREDENCE

Many individuals will need combination therapy

Excess early risk is predominantly due to CVD

Events within first 12 months of CREDENCE

MATCH INTENSITY OF GDMT TO RISK

Accelerated risk-based implementation of guideline directed combination therapy for type 2 diabetes and CKD

Very high/high risk

- Early nephrology referral
- Up-front, accelerated
 sequence combination therapy

Moderate/low risk

- Primary care management
- As needed specialist referral
- Traditional, sequential add-on therapy

Neuen BL, Tuttle KR & Vaduganathan M. Circulation 2024 (in press)

RISK-BASED APPROACH: ACCELERATED IMPLEMENTATION FOR THOSE AT HIGHEST RISK

<u>Concept:</u> Use validated risk score to identify which patients gain greatest absolute benefits accelerated uptake of kidney GDMT

Neuen BL et al. Am J Kidney Dis 2021

TIMING AND SEQUENCING OF KIDNEY GDMT (AND HF)

Traditional/conservative approach

Rapid sequence approach

It can take up over 12 months until guideline directed medical therapy for type 2 diabetes and CKD is fully implemented

Requirements For Full Utilisation of Proven Therapies

Kim D, Perkovic V, Kotwal S. KI Reports 2024

ARE WE WITNESSING A CONVERGENCE OF GDMT FOR HF AND CKD?

Yes:

- Key elements of GDMT are shared across heart failure and CKD
- GDMT for one condition can delay or prevent the onset of the other
- Newer components of GDMT can enable better use of RASi & MRA in both conditions
- Common unanswered questions about timing and sequencing
- Common implementation challenges

No:

- Greater heterogeneity in risk of CKD progression
- Unique treatment considerations in CKD (e.g. negative acute effects on GFR)
- Not all future components of CKD GDMT likely to reduce HF risk (e.g. ETA-RA)
- Need for disease-specific, targeted therapies for non-diabetic CKD (e.g. GNs)

