## Prediction of Heart Failure in Patients with CKD

Josef Coresh, MD, PhD

Founding Director, Optimal Aging Institute
Professor, NYU Grossman School of Medicine
KDIGO - March 22, 2024

Disclosures: Scientific advisor to Healthy.io and SomaLogic


## Prediction of Heart Failure in CKD

- Background - Staging \& Risk prediction in CKD (ckdpcrisk.org)
- Cardiovascular risk prediction - ASCVD (CHD, stroke), HF, CVM
- AHA PREVENT (Circulation 2024) includes
- HF risk prediction
- eGFR and ACR
- Future directions - Biomarker strengths and limitations


## Classification \& Staging of CKD (KDIGO 2012)

- Cause (C)
- GFR (G)
- Albuminuria (A)

| $\begin{array}{c}\text { Albuminuria Categories, } \\ \text { Description and Range }\end{array}$ |
| :---: |


| A1 | A2 | A3 |
| :---: | :---: | :---: |
| normal to <br> mildly <br> increased | moderately <br> increased | severely <br> increased |
| $<30 \mathrm{mg} / \mathrm{g}$ <br> $<3 \mathrm{mg} / \mathrm{mmol}$ | $30-299 \mathrm{mg} / \mathrm{g}$ <br> $3-29 \mathrm{mg} / \mathrm{mmol}$ | $\geq 300 \mathrm{mg} / \mathrm{g}$ |
| $\geq 30 \mathrm{mg} / \mathrm{mmol}$ |  |  |

NFK KDOQI 2002

KDIGO 2012 guidelines


KDIGO 2023 Update

## Prediction - Individualized Estimate from a Multivariable Model



## CKD: Risk Prediction \& Equations (ckdpcrisk.org)



Risk of KFRT among Kidney Donor Candidates

(Diabetes Care 2022)
Risk of albuminuria


Review: N Engl J Med June 2, 2022;386:2120-8

## Predicting CKD Progression: HF is a Risk Factor

## $\mathrm{CKD} \rightarrow \mathrm{HF}$

Outcome: $\geq 40 \%$ eGFR decline in 3 years Population: No Diabetes eGFR>60


NYU Langone Health

Development: 19 cohorts with 181,618; Median C-stat 0.739
Validation: 18 cohorts 236,284 participants; Median C-stat 0.743

## Predicting CVD Incidence: CKD is a Risk Factor

$\mathrm{CKD} \leadsto \mathrm{CVD}$

## Background:

- Multivariable equations are recommended by guidelines to assess absolute risk of cardiovascular disease (CVD).
- SCORE2 (in Europe predicts myocardial infarction, stroke, and CVD mortality.)
- Pooled Cohort Equation (in US predicts ASCVD = CHD + Stroke)


## Limitations:

- HF excluded
- B/W race-specific, older data (higher CVD risk), limited geography

New Equation (2023):

- AHA Predicting Risk of CVD EVENTs (PREVENTTM) Equation
- Addresses all of the limitation above (include HF, newer data, consider eGFR, ACR, A1c, SDI)


## Development and Validation of the American Heart Association Predicting Risk of Cardiovascular Disease EVENTs (PREVENT) Equations

Sadiya S. Khan, MD, MSc, Kunihiro Matsushita, MD, PhD, Yingying Sang, MSc, Shoshana H Ballew, PhD, Morgan E. Grams, MD, PhD, Aditya Surapaneni, PhD, Michael Blaha MD, MPH, April P. Carson, PhD, Alexander R. Chang, MD, MS, Elizabeth Ciemins, MPH, PhD, Alan S. Go, MD, Orlando M. Gutierrez, MD, Shih-Jen Hwang, PhD, Simerjot K. Jassal, MD, MAS, Csaba P. Kovesdy, MD, Donald M. Lloyd-Jones, MD, ScM, Michael G. Shlipak, MD, MPH, Latha P. Palaniappan, MD, MS, Laurence Sperling, MD, Salim S. Virani, MD, PhD, Katherine Tuttle, MD, lan J. Neeland, MD, Sheryl L. Chow, PharmD, Janani Rangaswami, MD, FAHA, Michael J. Pencina, PhD, Chiadi E. Ndumele, MD, PhD, Josef Coresh, MD, PhD For the Chronic Kidney Disease Prognosis Consortium and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group
Circulation 2024 (6):430-449. (ePub 2023) PMID: 37947085
PREVENT ${ }^{\text {TM }}$ Online Calculator
https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

Novel Prediction Equations for Absolute Risk Assessment of Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health: A Scientific Statement From the American Heart Association. Circulation. 2024;PMID: 37947094

Association.

Table 2. Meta-Analyzed Sex-Specific Hazard Ratios (95\% CIs) of Traditional Cardiovascular Ris Predictors for Total Cardiovascular Disease and Cardiovascular Disease Subtypes in Derivation Samples

| Risk factor | Total CVD |  | ASCVD |  | Heart failure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female $N=1839828$ | Male $N=1442091$ | Female $N=1839828$ | Male $N=1442091$ | Female $N=1839828$ | Male $N=1442091$ |
| Cardiovascular disease risk factors in the PREVENT-CVD primary model |  |  |  |  |  |  |
| Non-HDL-C per 1 mmol/L | 1.03 (0.99-1.07) | 1.07 (1.03-1.11) | 1.12 (1.07-1.17) | 1.17 (1.13-1.21) | * | * |
| HDL-C per $0.3 \mathrm{mmol} / \mathrm{L}$ | 0.85 (0.84-0.87) | 0.91 (0.89-0.93) | 0.86 (0.85-0.88) | 0.89 (0.87-0.92) | * | * |
| SBP <110 per 20 mmHg ( U -shape) | 0.78 (0.69-0.88) | 0.63 (0.54-0.72) | 0.91 (0.80-1.04) | 0.73 (0.61-0.86) | 0.63 (0.56-0.71) | 0.49 (0.44-0.56) |
| SBP $\geq 110$ per 20 mmHg | 1.43 (1.37-1.50) | 1.40 (1.35-1.45) | 1.44 (1.38-1.50) | 1.39 (1.34-1.44) | 1.44 (1.37-1.51) | 1.45 (1.39-1.50) |
| - Diabetes | 2.39 (2.31-2.48) | 2.18 (2.08-2.29) | 2.35 (2.23-2.47) | 2.10 (1.98-2.23) | 2.86 (2.72-3.01) | 2.56 (2.41-2.71) |
| Current smoking | 1.74 (1.55-1.96) | 1.59 (1.43-1.76) | 1.67 (1.46-1.91) | 1.53 (1.38-1.70) | 1.84 (1.60-2.12) | 1.70 (1.48-1.95) |
| BMI <30, per $5 \mathrm{~kg} / \mathrm{m}^{2} \quad(\mathrm{U}$-shape) | * | * | * | * | 0.98 (0.94-1.03) | 0.93 (0.88-0.99) |
| - $\mathrm{BMI} \geq 30$, per $5 \mathrm{~kg} / \mathrm{m}^{2}$ | * | * | * | * | 1.35 (1.28-1.41) | 1.46 (1.38-1.54) |
| eGFR $<60$, per $-15 \mathrm{~mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$ | 1.94 (1.86-2.03) | 1.86 (1.78-1.94) | 1.75 (1.66-1.84) | 1.59 (1.53-1.66) | 2.26 (2.16-2.36) | 2.19 (2.03-2.36) |
| eGFR $\geq 60$, per $-15 \mathrm{~mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$ (flat) | 1.04 (1.01-1.07) | 1.01 (0.99-1.03) | 1.04 (1.01-1.07) | 1.01 (0.99-1.03) | 1.05 (1.01-1.09) | 1.02 (0.98-1.06) |

Cardiovascular disease risk factor treatment status
Age-risk factor interactions per 10 y older

Antihypertensive use

Statin use
Treated $S B P \geq 110 \mathrm{mmHg}$ per 20 mmHg

Hazard ratios centered at age 55 years Stronger in younger, weaker in older age

Table 2. Meta-Analyzed Sex-Specific Hazard Ratios (95\% Cls) of Traditional Cardiovascular Riṣ Predictors for Total Cardiovascular Disease and Cardiovascular Disease Subtypes in Derivatio Samples

| Risk factor | Total CVD |  | ASCVD |  | Heart failure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female $N=1734246$ | Male $N=1356397$ | Female $N=1734246$ | Male $\mathrm{N}=1356397$ | Female $N=1734246$ | Male $\mathrm{N}=1356397$ |

...all risk factors and age interactions included but not shown

| eGFR<60, $-15 \mathrm{~mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$ | 1.72 (1.64-1.81) | 1.61 (1.53-1.69) | 1.58 (1.48-1.69) | 1.42 (1.36-1.49) | 1.96 (1.85-2.07) | 1.83 (1.69-1.97) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Kidney function |  |  |  |  |  |  |
| Ln UACR, mg/g, per 1 ln unit | 1.19 (1.17-1.22) | 1.21 (1.20-1.23) | 1.16 (1.14-1.19) | 1.17 (1.15-1.19) | 1.23 (1.21-1.26) | 1.27 (1.24-1.29) |
| No UACR availablet | 1.02 (0.98-1.07) | 1.12 (1.07-1.18) | 1.01 (0.96-1.05) | 1.07 (1.02-1.13) | 1.04 (0.98-1.11) | 1.19 (1.13-1.25) |
| Glycemic status |  |  |  |  |  |  |
| - HbA1c in diabetes, per 1\% | 1.14 (1.06-1.23) | 1.13 (1.07-1.19) | 1.14 (1.05-1.23) | 1.11 (1.05-1.18) | 1.20 (1.12-1.28) | 1.17 (1.10-1.24) |
| HbA1c no diabetes, per 1\% | 1.15 (1.14-1.16) | 1.11 (1.10-1.12) | 1.15 (1.14-1.17) | 1.12 (1.10-1.14) | 1.18 (1.16-1.20) | 1.13 (1.12-1.15) |
| No HbA1c availablet | 0.99 (0.94-1.05) | 0.97 (0.93-1.02) | 1.00 (0.95-1.06) | 0.99 (0.94-1.03) | 1.00 (0.94-1.06) | 0.97 (0.91-1.04) |
| SDl decile categories |  |  |  |  |  |  |
| SDI 1-3 | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
| SDI 4-6 | 1.15 (1.07-1.24) | 1.09 (1.00-1.20) | 1.16 (1.08-1.24) | 1.08 (0.97-1.20) | 1.14 (1.02-1.26) | 1.13 (1.02-1.25) |
| SDI 7-10 | 1.26 (1.15-1.38) | 1.33 (1.23-1.43) | 1.26 (1.16-1.38) | 1.32 (1.23-1.43) | 1.27 (1.15-1.40) | 1.42 (1.26-1.59) |
| No SDI availablet | 1.20 (1.13-1.27) | 1.16 (1.10-1.24) | 1.18 (1.12-1.24) | 1.16 (1.09-1.23) | 1.20 (1.12-1.29) | 1.19 (1.10-1.29) |

## External Validation: Calibration Plots for All CVD



## PREVENT Model -Discrimination \& Calibrationin Validation Sample (n~3.2 Million)

| Models | Total CVD |  | ASCVD |  | Heart failure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female | Male | Female | Male | Female | Male |
| Base PREVENT model |  |  |  |  |  |  |
| No. of cohorts | 21 | 21 | 21 | 21 | 21 | 21 |
| No. of participants | 1894882 | 1435203 | 1894882 | 1435203 | 1894882 | 1435203 |
| No. of events | 50324 | 46804 | 31277 | 31328 | 27931 | 23707 |
| C-statistic (IOI) | 0.794 (0.763 to 0.809) | 0.757 (0.727 to 0.778) | 0.774 (0.743 to 0.788) | 0.736 (0.710 to 0.755) | 0.830 (0.816 to 0.850) | 0.809 (0.777 to 0.827) |
| Calibration slope (IQl) | 1.03 (0.81 to 1.16) | 0.94 (0.81 to 1.13) | 1.09 (0.93 to 1.33) | 1.04 (0.95 to 1.19) | 1.00 (0.55 to 1.15) | 0.89 (0.49 to 1.07) |

Good discrimination \& calibration - overall \& in subgroups
Slightly improved discrimination vs. PCE \& by adding eGFR, ACR, A1c, SDI Good calibration for all CVD subtypes (vs. PCE ASCVD predicted $\sim 2 \times$ observed)

## Key Takeaways of the AHA PREVENT Equations

- HF included
- eGFR in the Base PREVENT model
- ACR optional

1. Include a large, contemporary, and diverse sample of US adults for derivation and external validation
2. Predict the risk of total or global CVD as a composite of atherosclerotic cardiovascular disease and heart failure as well as for each CVD subtype separately
3. Broaden the outcome to include prediction of heart failure
4. Remove race from risk prediction acknowledging that race is a social construct and not a biological predictor
5. Lower the age to begin risk prediction as early as age 30 years and capture a greater proportion of the adult life course
6. Provide risk estimates for CVD over a 10-year and 30-year time span
7. Offer optional models that incorporate add-on measures of kidney and metabolic health when indicated given the growing burden of cardiovascular-kidney-metabolic (CKM) syndrome
8. Include a measure of place-based social disadvantage (social deprivation index [SDI]) to acknowledge the role of social determinants of health in cardiovascular disease risk

## Cohort consortium informs clinical practice guidelines

## American Heart Association PREVENTTM

Higher predicted (absolute risk, AR) often identifies greater treatment benefit (absolute risk reduction, ARR)


Predicted CVD risk, \%

What's to come:

1. Evaluate Net Benefit in Trials
2. Equity evaluation
3. Implementation by AHA

- Anticipate use in guidelines

4. Integration into EMR and clinical practice

- Clinical decision support (CDS)
- Replace PCE (e.g. in national EPIC)

HF risk prediction including eGFR and ACR

Khan et al. Circulation 148: 1982-2004 (2023)
Corresponding - ckdpc@nyulangone.org
CKD Prognosis Consortium

## Future Directions

- The recent AHA PREVENT risk equations help determine who is at high risk but focused on:
- Traditional cardiovascular risk factors
- People without any CVD
- NT-pro-BNP and hs-troponin levels might provide additional risk information over traditional risk factors and within a broader patient population


## Research Questions

- What is the added value of NT-pro-BNP as a heart failure risk factor across a range of cohorts and patient characteristics (age, sex, BMI, eGFR, prevalent CHD/stroke (ASCVD), DM)?
- Does hs-troponin add additional information after NT-pro-BNP?
- Are NT-pro-BNP and hs-troponin levels across cohorts and measurement methods relatively uniform allowing for harmonization?

Health

## Biomarkers \& HF: Statistical Analysis

- Key Exposures:
- NT-pro-BNP (undetectable imputed at $2.5 \mathrm{pg} / \mathrm{mL}=0.5^{*}$ detectable) continuous
- Continuous, log2 (NT-por-BNP)
- <> 125 ng/L
- TnT categories: undetectable, low, high (>=99 ${ }^{\text {th }}$ percentile)
- Cox PH analysis
- Follow-up time scale (adjusted for age)
- Combining men and women
- Test interactions: Sex, age, BMI categorical (<30/>30), eGFR (<>60), ACR (<>30), DM, ASCVD
- Cohort-specific \& meta-analysis
- Uniformity of biomarker levels across cohorts
- Compare levels adjusted for risk factors (age, sex, smoking status, systolic blood pressure, total cholesterol, HDL cholesterol, anti-hypertensive use, statin use, diabetes, BMI (knot at 30), eGFR (spline knot at 60), ACR, ASCVD)


## Adjusted Hazard Ratio of Heart Failure per 2-fold higher NT-pro-BNP

| Study | Hazard Ratio Adj. HR, per 2 fold higher NTproBNP | C-statistic <br> Adj. Model | $\Delta$ in C-statistic Adding NT-pro-BNP |
| :---: | :---: | :---: | :---: |
| 1 | 1.31 (1.27, 1.35) | 0.752 | 0.016 (0.011, 0.020) |
| 2 | 1.36 (1.30, 1.43) | 0.774 | 0.030 (0.020, 0.040) |
| 3 | 1.68 (1.51, 1.87) | 0.781 | 0.065 (0.038, 0.093) |
| 4 | 1.45 (1.24, 1.70) | 0.767 | 0.035 (0.009, 0.060) |
| 5 | 1.46 (1.28, 1.67) | 0.679 | 0.052 (0.020, 0.083) |
| Meta-analysis | 1.43 (1.32, 1.54) |  | Range: 0.016 to 0.065 |
| Results are similar when adjusted for PREVENT base risk score |  |  |  |
| Further addition of hs-TNT does not improve the C-statistic much ( $\sim 0.004$, only statistically significant in one study) |  |  |  |

## NT-Pro-BNP: No Consistent Interactions

| Log2 NTproBNP | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NTproBNP in men (example) | 1.33 (1.28, 1.39) | 1.34 (1.26, 1.42) | 1.64 (1.47, 1.84) | 1.36 (1.12, 1.64) | 1.46 (1.28, 1.67) |
| Interactions (*NTproBNP): Female | 0.96 (0.91, 1.02) | 1.06 (0.97, 1.15) | 1.18 (0.89, 1.57) | 1.21 (0.89, 1.63) |  |
| Age | 1.08 (1.02, 1.13) | $1.02(0.97,1.07)$ | 0.96 (0.84, 1.09) | 1.07 (0.90, 1.26) |  |
| BMI | 0.92 (0.88, 0.96) | 0.97 (0.93, 1.01) | 0.81 (0.72, 0.91) | 0.98 (0.81, 1.20) | 1.37 (0.82, 2.29) |
| Diabetes | 0.92 (0.86, 0.97) | 0.91 (0.83, 0.99) | 0.70 (0.57, 0.86) | 0.86 (0.63, 1.17) | 0.84 (0.59, 1.18) |
| $\begin{aligned} & \hline \text { eGFR } \\ & (-15 \mathrm{ml} / \mathrm{min}) \\ & \hline \end{aligned}$ | 0.97 (0.92, 1.03) | 0.95 (0.90, 1.01) | 0.95 (0.82, 1.10) | 0.85 (0.65, 1.13) | 1.68 (0.63, 4.51) |
| InACR | 1.02 (1.01, 1.04) | 0.97 (0.95, 0.99) | 0.97 (0.93, 1.02) | 0.99 (0.89, 1.10) | 1.02 (0.93, 1.12) |

## NT-Pro-BNP: Inconsistency across cohorts

## Large between cohort variation <br> Beyond CVD risk factors

- Higher levels
- Prevalent CHD/stroke
- Lower eGFR
- Adjustment to age 55, male, SBP 130, BMI 25, no DM, no smoking, ACR 30


## Absolute cutoffs may mean different things in different cohorts/settings



## NT-Pro-BNP: 125 ng/L Threshold

- Consistent relative hazards for <>125 ng/L -- despite variable levels across cohorts

Study


Adjusted for age, sex, SBP, BP meds, smoking, DM, BMI, eGFR, ACR, prevalent CHD/stroke (ASCVD)

## NT-Pro-BNP: 125 ng/L Threshold

- Consistent relative hazards for <>125 ng/L -- despite variable levels across cohorts

| Study | $\begin{gathered} \text { HR BNP } \geq 125 \\ \text { Vs. }<125 \end{gathered}$ | C-statistic, base | $\Delta$ in C-statistic |
| :---: | :---: | :---: | :---: |
| 1 | 1.99 (1.81, 2.19) | 0.752 | 0.012 (0.008, 0.016) |
| 2 | 2.33 (1.90, 2.86) | 0.774 | $0.014(0.006,0.021)$ |
| 3 | 3.85 (2.27, 6.52) | 0.781 | 0.026 (0.008, 0.044) |
| 4 | 2.25 (1.36, 3.72) | 0.767 | $0.024(0.005,0.042)$ |
| 5 | 2.47 (1.67, 3.66) | 0.679 | 0.036 (0.006, 0.065) |

## Conclusions: Prediction of Heart Failure in CKD

- Background - CKD staging \& risk prediction in CKD (ckdpcrisk.org) are well developed with multiple tools ready for wider application
- Cardiovascular risk prediction - ASCVD (CHD, stroke), HF, CVM
- AHA PREVENT (Circulation 2024; US cohorts) includes
- HF risk prediction
- eGFR and ACR
- Future directions - Biomarker: NT-pro-BNP is a consistent risk factor across a wide range of cohorts and subgroups (including CKD) despite some calibration issues
- Could be used to identify patients who may benefit from early treatment of HF risk factors; as well as inclusion in future clinical trials of HF therapies in CKD.


## Thank you

CKD Prognosis Consortium (NKF \& KDIGO) Steering committee: J Coresh (co-PI), M Grams (co-PI), K Matsushita (CVD), S Ballew, A Levey, R Gansevoort, Juan-Jesus Carrero, Michael Shlipak, Dorothea Nitsch Analysis leaders: Y Sang, A Surapaneni

## CKD-EPI Collaboration (eGFR)

Lesley Inker \& Andrew Levey
Johns Hopkins \& NYU Langone Health co-investigators \& staff

## External Validation: Calibration Plots for All CVD



Table 1. Individual-level participant baseline characteristics of derivation and validation samples stratified by sex for prediction of total cardiovascular disease and cardiovascular disease subtypes.


## Development and Validation of PREVENTTM (pending) Equations: Methods

Derivation: 25 datasets (3,281,919 participants) between 1992-2017.
Primary outcome: CVD (atherosclerotic CVD [ASCVD] and heart failure [HF]).
Predictors: Traditional risk factors (smoking status, systolic blood pressure, cholesterol, antihypertensive or statin use, diabetes) and estimated glomerular filtration rate [eGFR].
Models: Sex-specific, developed on the age-scale, and adjusted for competing risk of non-CVD death.
Analyses: In each dataset and meta-analyzed.

- Discrimination was assessed using Harrell's C-statistic.
- Calibration was calculated as the slope of the observed vs. predicted risk by decile.

Equations: Sequential equations to predict each CVD subtype (ASCVD, HF)

- Equations with additional predictors (urine albumin-to-creatinine ratio [UACR], hemoglobin A1c [HbA1c]), and social deprivation index [SDI])
External validation: 3,330,085 participants from 21 additional datasets.


## PREVENT ${ }^{\text {TM }}$ Equations

## Results:

6,612,004 adults included, mean (SD) age was 53 (12) years and $56 \%$ were female.
Follow-up: mean (SD) 4.8 (3.1) years; 211,515 incident total CVD events.

## External validation

- Median C-statistics for CVD were 0.794 (interquartile interval [IQI]: 0.763-0.809)
in female and 0.757 (0.727-0.778) in male participants.
improved by eGFR, improved on PCE (by a little)
- Calibration slopes were 1.03 (IQI $0.81-1.16$ ) and 0.94 (0.81-1.13) among females and males

Lower ASCVD calibration than PCE (slope ~0.5); all CVD closer to PCE ASCVD

- Similar estimates for discrimination and calibration for ASCVD- and HF-specific models.
- The improvement in discrimination was small but statistically significant when UACR, HbA1c, and SDI were added together to the base model to total CVD ( $\Delta \mathrm{C}$-statistic [IQI] 0.004 [0.004, 0.005] and 0.005 [0.004, 0.007] among females and males, respectively).


## NYULangone

Health

## Prediction - Individualized Estimate from a Multivariable Model Diagnostic vs. Prognostic (harder to predict the future)

Diagnostic: Cross-sectional


## Prognosis: Prospective Risk Modeling



## Development of Risk Prediction Models

| Consideration | Comments |
| :---: | :---: |
| 1. Population <br> at risk | Identify persons at risk to whom the model <br> will be applied on the basis of demo- <br> graphic characteristics, health status, <br> location, and clinical context. |
| 2. Outcome <br> of interest | Use well-curated data, with outcomes that <br> reflect the primary focus of care. |
| 3. Time horizon | Starting point and duration of follow-up <br> should align with goals of interventions. |
| 4. Predictors | Decisions about choices and number of <br> predictors should take into account ease <br> and time of collection, possible bias, <br> model stability, and interpretation (e.g., <br> understanding what outputs the model |
| produces and identifying key predictors |  |
| and their association with outcome). |  |

Consideration
5. Mathematical model will be applied on the basis of demographic characteristics, health status, location, and clinical context. reflect the primary focus of care.
arting point and duration of follow-up should align with goals of interventions.
cisions about choices and number of predictors should take into account ease and time of collection, possible bias, model stability, and interpretation (e.g., understanding what outputs the model produces and identifying key predictors and their association with outcome).

## Age-related diseases can be prevented

Vascular health is central to optimal aging

Inter-connected function of the:

- Heart, kidney, brain \& muscles

Life's essential 8 (keys to prevention):

- No smoking, good sleep, diet \& exercise
- Optimal blood glucose, lipids \& pressure
- Ideal weight

Huge potential to prevent chronic diseases


## Cohort consortium informs clinical practice guidelines

| Chronic kidney disease heatmap |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Urine albumin to creatinine ratio, $\mathrm{mg} / \mathrm{g}$ |  |  |  |  |
| Overall | $<10$ | 10-29 | 30-299 | 300-999 | $\geq 1000$ |
| eGFR, mL/min $/ 1.73 \mathrm{~m}^{2}$ using creatinine alone | All-cause mortality: 82 cohorts 26444384 participants; 2604028 events |  |  |  |  |
| $\geq 105$ | 1.6 | 2.2 | 2.9 | 4.3 | 5.8 |
| 90-104 | Reference | 1.3 | 1.8 | 2.6 | 3.1 |
| 60-89 | 1.19 | 1.3 | 1.7 | 2.2 | 2.8 |
| 45-59 | 1.3 | 1.6 | 2.0 | 2.4 | 3.1 |
| 30-44 | 1.8 | 2.0 | 2.5 | 3.2 | 3.9 |
| 15-29 | 2.8 | 2.8 | 3.3 | 4.1 | 5.6 |
| <15 | 4.6 | 5.0 | 5.3 | 6.0 | 7.0 |

Lower kidney filtration and higher urine protein predict higher risk of 10 adverse outcomes in $\mathbf{2 7}$ million people.
$\rightarrow$ KDIGO guidelines 2024
$\rightarrow$ Ckdpcrisk.org - implemented into more EMRs

## CKD

Grams, Coresh et al. for CKD Prognosis Consortium JAMA 330(13):1266-1277 (2023)


## International consortia inform clinical practice guidelines

## CMD Prognosis Consortium

Chronic Kidney Disease Prognosis Consortium (CKD-PC)
Co-PIs: Morgan Grams (Precision Medicine) \& Josef Coresh (OAI) Operations Director: Shoshana Ballew


- Move from prognosis to clinical practice guidelines
- Establish risk scores for chronic kidney disease, cardiovascular disease (AHA PREVENT ${ }^{\text {TM }}$ ) and heart failure


## Collaborative Opportunities

- Leverage data for research into dementia, aging \& cancer
- National \& global EMR research


## Definition of CKM Syndrome Simplified

Cardiovascular-kidney-metabolic (CKM) syndrome
is a health disorder due to connections among heart disease, kidney disease, diabetes, and obesity leading to poor health outcomes.


## Stages of Cardiovascular-Kidney-Metabolic Syndrom



Abbreviations: Afib indicates atrial fibrillation; ASCVD, atherosclerotic cardiovascular disease; CHD, coronary heart disease; CKD, chronic kidney disease: CKM,
American
Americ
Heart
Association.

## Cardiovascular-Kidney-Metabolic Syndrome <br> Patient-Centered <br> Implementation Focus

Abbreviations: ASCVD indicates atherosclerotic cardiovascular disease; BMI, body mass index; CKD, chronic kidney disease; and UACR, urine albumin-creatinine ratio.


Table S5D. Meta-analyzed calibration slope (IQI) for the base model with and without eGFR

| Subgroup |  | Base without eGFR |  | Base |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Development | Validation | Development | Validation |
|  |  | Total CVD |  |  |  |
|  | Overall | $\begin{gathered} 1.07 \\ (0.84,1.28) \end{gathered}$ | $\begin{gathered} 1.02 \\ (0.80,1.21) \end{gathered}$ | $\begin{gathered} 1.06 \\ (0.81,1.23) \end{gathered}$ | $\begin{gathered} 1.00 \\ (0.81,1.14) \end{gathered}$ |
|  | Men | $\begin{gathered} 1.07 \\ (0.89,1.28) \end{gathered}$ | $\begin{gathered} 0.96 \\ (0.79,1.14) \end{gathered}$ | $\begin{gathered} 1.06 \\ (0.89,1.25) \end{gathered}$ | $\begin{gathered} 0.94 \\ (0.81,1.13) \end{gathered}$ |
|  | Women | $\begin{gathered} 1.08 \\ (0.85,1.28) \\ \hline \end{gathered}$ | $\begin{gathered} 1.05 \\ (0.80,1.17) \\ \hline \end{gathered}$ | $\begin{gathered} 1.06 \\ (0.82,1.21) \\ \hline \end{gathered}$ | $\begin{gathered} 1.03 \\ (0.81,1.16) \\ \hline \end{gathered}$ |
|  | eGFR <60 | $\begin{gathered} 1.34 \\ (1.04,1.75)_{u} \end{gathered}$ | $\begin{gathered} 1.29 \\ (0.98,1.48) \end{gathered}$ | $\begin{gathered} 1.10 \\ (0.87,1.35) \\ \hline \end{gathered}$ | $\begin{gathered} 1.02 \\ (0.83,1.22) \\ \hline \end{gathered}$ |
|  | eGFR <45 | $\begin{gathered} 1.55 \\ (1.19,1.99)^{\text {pr }} \end{gathered}$ | $\begin{gathered} 1.53 \\ \text { Sict } \\ \hline \text { E) }(1.03,1.67) \\ \hline \end{gathered}$ | $\begin{gathered} 1.11 \\ (0.89,1.30) \\ \hline \end{gathered}$ | $\begin{gathered} 1.04 \\ (0.73,1.22) \\ \hline \end{gathered}$ |

## All CVD 10-Year Risk by Sex, Age

 and Number of Elevated Risk Factors


Optimal risk factor levels are non-HDL cholesterol ( $3.5 \mathrm{mmol} / \mathrm{L} ; 135 \mathrm{mg} / \mathrm{dl}$ ), high
density lipoprotein cholesterol ( $1.5 \mathrm{mmol} / \mathrm{L}, 58 \mathrm{mg} / \mathrm{dl}$ ), SBP 120 mmHg , no diabetes, no smoking, no hypertension medications, and no statins and eGFR $90 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2$.
Elevated risk factor levels considered are non-high density lipoprotein cholesterol ( $5.5 \mathrm{mmol} / \mathrm{L} ; 213 \mathrm{mg} / \mathrm{dl}$ ), SBP 150 mmHg , diabetes, or smoking and eGFR $45 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2$. For multiple elevated risk factors, the risk shown is the average risk of all Health combinations.

All risk factors optimal
1 Risk factor elevated
-2 Risk factors elevated

- 3 Risk factors elevated
- 4 Risk factors elevated
-5 Risk factors elevated


## Statement on Risk Prediction Includes PREVENT ${ }^{\text {TM (pending) }}$ Risk Scenarios

| 10-year CVD risk in Women |  |  | Diabetes (No) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Diabetes (Yes) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Whites |  |  |  |  |  |  |  |  |  |  |  | Blacks |  |  |  |  |  |  |  |  |  |  |  | Whites |  |  |  |  |  |  |  |  |  |  |  | Blacks |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Current Smoking (No) |  |  |  |  |  | Current Smoking (Yes) |  |  |  |  |  | Current Smoking (No) |  |  |  |  |  | Current Smoking (Yes) |  |  |  |  |  | Current Smoking (No) |  |  |  |  |  | Current Smoking (Yes) |  |  |  |  |  | Current Smoking (No) |  |  |  |  |  | Current Smoking (Yes) |  |  |  |  |
| Age |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated Systolic |  |  | Untreated Systolic |  |  | Treated <br> Systolic |  |
|  |  |  | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 | 160 | 100 | 120 | 140 | 120 | 140 |
| 40 |  | 65 | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 0\% | 0\% | 0\% | 1\% | 1\% | 3\% | 0\% | 0\% | 1\% | 1\% | 3\% | 5\% | 0\% | 0\% | 1\% | 1\% | 1\% | 1\% | 1\% | 2\% | 3\% | 3\% | 3\% | 4\% | 0\% | 1\% | 1\% | 1\% | 3\% | 6\% | 0\% | 1\% | 2\% | 3\% | 6\% |
|  | 160 | 55 | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 0\% | 0\% | 1\% | 1\% | 2\% | 4\% | 0\% | 1\% | 1\% | 2\% | 4\% | 8\% | \% | 1\% | 1\% | \% | 1\% | \% | 2\% | 3\% | 3\% | 3\% | 5\% | 6\% | 0\% | 1\% | 2\% | 2\% | 5\% | 10\% | 1\% | 2\% | 4\% | 4\% | 9\% |
|  |  | 45 | 0\% | 0\% | 1\% | 1\% | 1\% | 1\% | 1\% | 2\% | 3\% | 3\% | 4\% | 5\% | 0\% | 1\% | 1\% | 1\% | 3\% | 7\% | 0\% | 1\% | 2\% | 3\% | 6\% | 13\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 5\% | 5\% | 7\% | 9\% | 0\% | 1\% | 3\% | 3\% | 7\% | 15\% | 1\% | 2\% | 6\% | 6\% | 14\% |
|  |  | 65 | 0\% | 0\% | \% | 0\% | 1\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 4\% | 0\% | 0\% | 1\% | 1\% | 2\% | 3\% | 0\% | 1\% | \% | 1\% | 3\% | 7\% | 0\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 4\% | 5\% | 7\% | 0\% | 1\% | 1\% | 2\% | 4\% | 8\% | 0\% | 1\% | 3\% | 3\% | 8\% |
|  | 200 | 55 | 0\% | 1\% | \% | 1\% | 1\% | 1\% | 1\% | 2\% | 3\% | 3\% | 4\% | 5\% | 0\% | 0\% | 1\% | 1\% | 2\% | 5\% | 0\% | 1\% | 2\% | 2\% | 5\% | 10\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 5\% | 5\% | 7\% | 9\% | 0\% | 1\% | 2\% | 2\% | 6\% | 12\% | 1\% | 2\% | 4\% | 5\% | 11\% 22\% |
|  |  | 45 | 1\% | 1\% | \% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 4\% | 6\% | 7\% | 0\% | 1\% | 1\% | 2\% | 4\% | 8\% | 0\% | 1\% | 3\% | 3\% | 8\% | 15\% | 1\% | 1\% | 2\% | 2\% | 3\% | 3\% | 4\% | 6\% | 8\% | 8\% | 11\% | 14\% | 1\% | 2\% | 4\% | 4\% | 9\% | 18\% | 1\% | 3\% | 7\% | 8\% | 17\% 33\% |
|  |  | 65 | 0\% | 1\% | \% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 3\% | 4\% | 5\% | 0\% | 0\% | 1\% | 1\% | 2\% | 4\% | 0\% | 1\% | 1\% | 2\% | 4\% | 8\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 6\% | 6\% | 8\% | 10\% | 0\% | 1\% | 2\% | 2\% | 5\% | 9\% | 1\% | 2\% | 3\% | 4\% | 9\% 18\% |
|  | 240 | 55 | 1\% | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 3\% | 4\% | 4\% | 6\% | 7\% | 0\% | 0\% | 1\% | 1\% | 3\% | 6\% | 0\% | 1\% | 2\% | 2\% | 6\% | 11\% | 1\% | 1\% | 2\% | 2\% | 3\% | 3\% | 4\% | 6\% | 8\% | 8\% | 10\% | 13\% | 0\% | 1\% | 3\% | 3\% | 7\% | 14\% | 1\% | 2\% | 5\% | 6\% | 13\% $25 \%$ |
|  |  | 45 | 1\% | 1\% | 1\% | 1\% | 2\% | 3\% | 3\% | 4\% | 6\% | 6\% | 8\% | 10\% | 0\% | 1\% | 2\% | $2 \%$ | 5\% | 9\% | 1\% | 2\% | 3\% | 4\% | 9\% | 18\% | 1\% | 2\% | 3\% | 3\% | 4\% | 5\% | 6\% | 9\% | 11\% | 11\% | 15\% | 19\% | 1\% | 2\% | 4\% | 5\% | 11\% | 21 | 1\% | 4\% | 8\% | 9\% | 20\% |
| 50 |  | 65 | 0\% | 1\% | 1\% | 1\% | 1\% | 2\% | 1\% | 2\% | 3\% | 3\% | 3\% | 4\% | 0\% | 1\% | 2\% | 2\% | 3\% | 5\% | 1\% | 2\% | 3\% | 3\% | 6\% | 11\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 3\% | 4\% | 5\% | 5\% | 7\% | 8\% | 1\% | 2\% | 4\% | 4\% | 7\% | 13\% | 2\% | 4\% | 8\% | 8\% | 14\% 24\% |
|  | 160 | 55 | 1\% | 1\% | 1\% | 1\% | 1\% | 2\% | $2 \%$ | 2\% | 3\% | 3\% | 4\% | 5\% | 1\% | 1\% | 2\% | 2\% | 4\% | 7\% | 1\% | 2\% | 4\% | 4\% | 8\% | 13\% | \% | 2\% | 2\% | 2\% | 3\% | 4\% | 3\% | 4\% | 6\% | 6\% | 8\% | 10\% | 1\% | 3\% | 5\% | 5\% | 9\% | 16\% | 3\% | 6\% | 10 | 10\% | 18\% 29\% |
|  |  | 45 | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 4\% | 4\% | 5\% | 7\% | 1\% | 2\% | 3\% | 3\% | 5\% | 9\% | 2\% | 3\% | 6\% | 6\% | 10\% | 17\% | 1\% | 2\% | 3\% | 3\% | 4\% | 5\% | 4\% | 6\% | 8\% | 8\% | 10 | 13\% | 2\% | 4\% | 7\% | 7\% | 12 | 20\% | 4\% | 7\% | 13\% | 13 | 23\% 36\% |
|  |  | 65 | 1\% | 1\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 3\% | 3\% | 5\% | 6\% | 1\% | \% | 2\% | 2\% | 4\% | 7\% | 1\% | 2\% | 4\% | 4\% | 8\% | 13\% | 1\% | 2\% | 2\% | 2\% | 3\% | 4\% | 3\% | 5\% | 7\% | 6\% | 9\% | 11\% | 1\% | 3\% | 5\% | 5\% | 9\% | 15\% | 3\% | 6\% | 10 | 10 | 17\% 28\% |
|  | 200 | 55 | 1\% | 1\% | 1\% | 1\% | 2\% | 3\% | 2\% | 3\% | 4\% | 4\% | 6\% | 7\% | 1\% | 1\% | 3\% | 3\% | 5\% | 3\% | 1\% | 3\% | 5\% | 5\% | 10\% | 16\% | 1\% | 2\% | 3\% | 3\% | 4\% | 5\% | 4\% | 6\% | 8\% | 8\% | 11\% | 14\% | 2\% | 4\% | 6\% | 6\% | 11 | 19\% | 3\% | 7\% | 12\% | 12\% | 22\% 34\% |
|  |  | 45 | 1\% | 1\% | 2\% | 2\% | 3\% | 3\% | 3\% | 4\% | 5\% | 5\% | 7\% | 9\% | 1\% | 2\% | 4\% | 4\% | 7\% | 11\% | 2\% | 4\% | 7\% | 7\% | 3\% | 21\% | 2\% | 3\% | 4\% | 4\% | 5\% | 6\% | 5\% | 8\% | 10\% | 10\% | 14\% | 17\% | 2\% | 5\% | 8\% | 8\% | 15 | 24\% | 4\% | 9\% | 16\% | 16\% | 28\% 43\% |
|  |  | 65 | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 2\% | 3\% | 4\% | 4\% | 6\% | 8\% | 1\% | 1\% | 3\% | 2\% | 5\% | 8\% | 1\% | 3\% | 5\% | 5\% | 9\% | 15\% | 2\% | 2\% | 3\% | 3\% | 4\% | 5\% | 4\% | 6\% | 8\% | 8\% | 11 | 14\% | 2\% | 3\% | 6\% | 6\% | $11 \%$ | 18\% | 3\% | 7\% | 12 | 11 | 33\% |
|  | 240 | 55 | 1\% | 1\% | 2\% | 2\% | 3\% | 3\% | $3 \%$ | 4\% | 5\% | 5\% | 7\% | 9\% | 1\% | 2\% | 3\% | 3\% | 6\% | 10\% | 2\% | 3\% | 6\% | 6\% | 11\% | 19\% | 2\% | 3\% | 4\% | 4\% | 5\% | 6\% | 5\% | $8 \%$ | 10\% | 10\% | 13 | 17\% | 2\% | 4\% | 8\% | 7\% | 138 | 22\% | 4\% | 8\% | 15 | 14 | 25\% 39\% |
|  |  | 45 | 1\% | 2\% | 2\% | 2\% | 3\% | 4\% | 4\% | 5\% | 7\% | 7\% | 9\% | 12\% | 1\% | 2\% | 4\% | 4\% | 8\% | 3\% | 2\% | 5\% | 8\% | 8\% | 15\% | 24\% | 2\% | 3\% | 5\% | 5\% | 6\% | 8\% | 7\% | 10\% | 13\% | 13\% | 17\% | 22\% | 3\% | 6\% | 10\% | 10\% | 17\% | 28\% | 5\% | 11\% | 19 | 18 | 49 |
| 60 |  | 65 | 2\% | 2\% | 3\% | 3\% | 4\% | 5\% | 3\% | 5\% | 6\% | 6\% | 8\% | 11\% | 2\% | 3\% | 5\% | 4\% | 7\% | 10\% | 4\% | 6\% | 10\% | 8\% | 13\% | 18\% | 3\% | 4\% | 6\% | 6\% | 8\% | 10\% | 6\% | 9\% | 12\% | 12 | 15 | 20\% | 4\% | 7\% | 11\% | 10\% | 15\% | 21\% | 9\% | 148 | 21\% | 19\% | 28\% 38\% |
|  | 160 | 55 | 2\% | 2\% | 3\% | 3\% | 4\% | 6\% | 4\% | 5\% | 7\% | 7\% | 9\% | 12\% | 2\% | 4\% | 5\% | 5\% | 7\% | 10\% | 4\% | 7\% | 11\% | 9\% | 14\% | 20\% | 3\% | 5\% | 6\% | 6\% | 8\% | 11\% | 7\% | 10\% | 13\% | 13\% | 17\% | 22\% | 5\% | 8\% | 13\% | 11\% | 16\% | $23 \%$ | 10\% | 16 | 23\% | \% | 41 |
|  |  | 45 | 2\% | 3\% | 4\% | 4\% | 5\% | 7\% | 4\% | 6\% | 8\% | 8\% | 11\% | 148 | 2\% | 4\% | 6\% | 5\% | 8\% | 12\% | 5\% | 8\% | 12\% | 10\% | 15\% | 22 | 4\% | 5\% | 7\% | 7\% | 10\% | 12\% | 8\% | 11\% | 15\% | 15\% | 19\% | 25\% | 6\% | 9\% | 14\% | 12\% | 18\% | 26\% | 11\% | 18\% | 26\% | 23\% | 45 |
|  |  | 65 | 2\% | 3\% | 4\% | 3\% | 5\% | 6\% | 4\% | 5\% | 7\% | 7\% | 10\% | 13\% | 2\% | 4\% | 6\% | 5\% | 8\% | 12\% | 5\% | 8\% | 12\% | 10\% | 15\% | 22\% | 4\% | 5\% | 7\% | 7\% | 9\% | 12\% | 7\% | 10\% | 14\% | 14\% | 18\% | 23\% | 5\% | 9\% | 14\% | 12\% | 18\% | 26\% | 11\% | 17\% | 26\% | 22\% | 33\% 45\% |
|  | 200 | 55 | 2\% | 3\% | \% | 4\% | 5\% | 7\% | 4\% | 6\% | 8\% | 8\% | 11\% | 14\% | 3\% | 4\% | 7\% | 6\% | 9\% | 13\% | 5\% | 8\% | 13\% | 11\% | 17\% | 24\% | 4\% | 6\% | 7\% | 7\% | 10\% | 13\% | 8\% | 11\% | 15\% | 15\% | 20\% | 25\% | 6\% | 10\% | 15\% | 13\% | 20\% | 28\% | 12\% | 19\% | 28\% | 24\% | 36 |
|  |  | 45 | 2\% | 3\% | \% | 4\% | 6\% | 8\% | 5\% | 7\% | 9\% | 9\% | 12\% | 16\% | 3\% | 5\% | 7\% | 6\% | 10\% | 14\% | 6\% | 9\% | 14\% | 12\% | 19\% | 26\% | 4\% | 6\% | 8\% | 8\% | 11\% | 15\% | 9\% | 13\% | 17\% | 17\% | 23\% | 29\% | 7\% | 11\% | 17\% | 15\% | 22\% | 31 | 13\% | 21\% | 31\% | 27\% | 39\% 52\% |
|  |  | 65 | 2\% | 3\% | \% | 4\% | 5\% | 7\% | 4\% | 6\% | 8\% | 8\% | 11\% | 14\% | 3\% | 5\% | 7\% | 6\% | 9\% | 14\% | 5\% | 9\% | 14\% | 12\% | 18\% | 25\% | 4\% | 6\% | 8\% | 8\% | 10\% | 13\% | 8\% | 12\% | 16\% | 16\% | 21\% | 26\% | 6\% | 11\% | 16\% | 148 | 21\% | 30\% | 12\% | 20\% | 30\% | 26\% | 38 |
|  | 240 | 55 | 2\% | 3\% | 5\% | 4\% | 6\% | 8\% | 5\% | 7\% | 9\% | 9\% | 13\% | 16\% | 3\% | 5\% | 8\% | 7\% | 10\% | 15\% | 6\% | 10\% | 15\% | 13\% | 20\% | 28\% | 5\% | 6\% | 9\% | 9\% | 11\% | 15\% | 9\% | 13\% | 17\% | 17\% | 23\% | 29\% | 7\% | 12\% | 18\% | 15\% | 23\% | 32 | 14\% | 22\% | 32\% | 28\% | 41\% |
|  |  | 45 | 3\% | 4\% | 5\% | 5\% | 7\% | 9\% | 6\% | 8\% | 11\% | 11\% | 14\% | 18\% | 3\% | 6\% | 9\% | 8\% | 12\% | 17\% | 7\% | 11\% | 17\% | 14\% | 22\% | 31\% | 5\% | 7\% | 10\% | 10\% | 13\% | 17\% | 11\% | 15\% | 20\% | 20\% | 26\% | 32\% | 8\% | 13\% | 20\% | 17\% | 26\% | 35\% | 15\% | 25\% | 36\% | $31 \%$ | 44\% 58\% |
|  |  | 65 | 5\% | 8\% | 10\% | 10\% | 14\% | 17\% | 9\% | 12\% | 16\% | 16\% | 21\% | 27\% | 6\% | 9\% | 11\% | 9\% | 12\% | 15\% | 12\% | 16\% | 22\% | 17\% | 22\% | 28\% | 10\% | 14\% | 19\% | 19\% | 25\% | 31\% | 16\% | 22\% | 29\% | 29\% | 37\% | 46\% | 14\% | 19\% | 25\% | 20\% | 26\% | 32\% | 26\% | 35\% | 44\% | 36\% | 45 |
|  | 160 | 55 | 6\% | 8\% | 10\% | 10\% | 14\% | 18\% | 9\% | 13\% | 17\% | 17\% | 22\% | 28\% | 6\% | 8\% | 11\% | 9\% | 12\% | 15\% | 12\% | 16\% | 21\% | 17\% | 22\% | 27\% | 11\% | 15\% | 19\% | 19\% | 25\% | 32\% | 17\% | 23\% | 30\% | 30\% | 38\% | 47\% | 14\% | 19\% | 25\% | 20\% | 26\% | 32 | 26\% | 35\% | 44 | 35\% | 45\% 54\% |
|  |  | 45 | 6\% | 8\% | 11\% | 11\% | 15\% | 19\% | 9\% | 13\% | 17\% | 17\% | 23\% | 29\% | 6\% | 8\% | 11\% | 9\% | 11\% | 15\% | 11\% | 16\% | 21\% | 16\% | 21\% | 27\% | 11\% | 15\% | 20\% | 20\% | 26\% | 33\% | 17\% | 24\% | 31\% | 31\% | 39\% | 48\% | 14\% | 19\% | 25\% | 19\% | 25\% | 31\% | 25\% | 34\% | 43 | 35\% | 44\% 53\% |
|  |  | 65 | 6\% | 8\% | 11\% | 11\% | 14\% | 18\% | 9\% | 13\% | 17\% | 17\% | 23\% | 29\% | 7\% | 11\% | 14\% | 11\% | 14\% | 18\% | 14\% | 20\% | 26\% | 20\% | 27\% | 33\% | 11\% | 15\% | 20\% | 20\% | 26\% | 33\% | 17\% | 24\% | 31\% | 31\% | 39\% | 48\% | 17\% | 23\% | 30\% | 24\% | 31\% | 38 | 31\% | 41\% | 51\% | 42\% | 52 |
|  |  | 55 | 6\% | 8\% | 11\% | 11\% | 15\% | 19\% | 10\% | 13\% | 18\% | 18\% | 23\% | 29\% | 7\% | 10\% | 14\% | 11\% | 14\% | 18\% | 14\% | 20\% | 26\% | 20\% | 26\% | 33\% | 11\% | 16\% | 21\% | 20\% | 27\% | 34\% | 18\% | 24\% | 32\% | 31\% | 40\% | 49\% | 17\% | 23\% | 30\% | 24\% | 31\% | 38\% | 31\% | 41\% | 51\% | 42\% | 52 |
|  |  | 45 | 6\% | 9\% | 12\% | 12\% | 15\% | 20\% | 10\% | 14\% | 18\% | 18\% | 24\% | 30\% | 7\% | 10\% | 14\% | 10\% | 14\% | 18\% | 14\% | 19\% | 25\% | 20\% | 26\% | 32\% | 12\% | 16\% | 21\% | 21\% | 28\% | 35\% | 18\% | 25\% | 33\% | 32\% | 42\% | 50\% | 16\% | 23\% | 29\% | 23\% | 30\% | 37\% | 30\% | 40\% | 50\% | 41\% | 51\% 60\% |
|  |  |  | 6\% | 9\% | 11\% | 11\% | 15\% | 19\% | 10\% | 14\% | 18\% | 18\% | 24\% | 30\% | 9\% | 12\% | 16\% | 13\% | 17\% | 21\% | 17\% | 23\% | 30\% | 24\% | 31\% | 38\% | 11\% | 16\% | 21\% | 21\% | 27\% | 34\% | 18\% | 25\% | 32\% | $32 \%$ | 41\% | 50\% | 20\% | 27\% | 35\% | 28\% | 36\% | 44\% | 36\% | 47\% | 57\% | 48\% | 58\% 68\% |
|  |  |  | 6\% | 9\% | 12\% | 12\% | 16\% | 20\% | 10\% | 14\% | 19\% | 19\% | 25\% | 31\% | 9\% | 12\% | 16\% | 12\% | 17\% | 21\% | 17\% | 23\% | 30\% | 23\% | 30\% | 37\% | 12\% | 16\% | 22\% | 22\% | 28\% | 35\% | 19\% | 26\% | 33\% | 33\% | 42\% | 51\% | 20\% | 27\% | 34\% | 27\% | 35\% | 43\% | 35\% | 46\% | 57\% | 47\% | 58\% 67\% |
|  |  |  | 7\% | 9\% | 12\% | 12\% | 16\% | 21\% | 11\% | 15\% | 19\% | 19\% | 25\% | $32 \%$ | 9\% | 12\% | 16\% | 12\% | 16\% | 21\% | 16\% | 22\% | 29\% | 23\% | 30\% | 37\% | 12\% | 17\% | 22\% | 22\% | 29\% | 36\% | 19\% | 27\% | 34\% | 34\% | 43\% | 52\% | 19\% | 26\% | 34\% | 27\% | 35\% | $42 \%$ | 35\% | 46\% | 56\% | 47\% | 57\% 67\% |

## Simplified Models

# Excellent regression approximation of the full <br> Excellent regression approximation of the full competing risks (CDV and mortality) models R-square $\sim 0.999$ for logit of risk <br> Excellent regression approximation of the full competing risks (CDV and mortality) models R-square $\sim 0.999$ for logit of risk 

Conclusions: The PREVENT equations accurately and precisely predicted risk for incident CVD and its subtypes in a large, diverse, and contemporary sample of US adults using routinely available clinical variables. Further addition of kidney, metabolic, and social predictors marginally improved risk discrimination but may refine risk estimation in higher-risk subgroups.

Funding American Heart Association, US National Kidney Foundation, NIDDK, and NHLBI

## Improving Patient Management



Foal: Cardiorenal Risk Reduction if Hitch-Risk Patients vith Type 2 Diabetes (in addition to comprehensive tV risk management)*


Defined differently across WOIS but all inctuded indinturals with establithed
CTD (eg, M. stroke, aniy revasularization procedure). Variably induded: condfitions such as transtant schenit attack, unstable angina. amputation, smpplomatic or asymptomatic corconary aitery disewse.



If additional cardiorenal risk reduction or glycemic lowering needed



## Summary

- Risk prediction can help guide clinical action
- Important to check
- Discrimination
- Calibration
- Thresholds
- Match thresholds to treatment recommendations
- Consider likely benefits (risk reduction), harms and costs
- New therapies for kidney and cardiovascular risk reduction
- ACEI, ARB, Statins, Diuretics, CCBs
- $\quad \rightarrow$ SGLT2, GLP1, MRAs
- May benefit from careful upated risk estimates (include HF in CVD and consider CKD) and thresholds

Health

## Acknowledgements:

- ARIC Investigators, Staff and Participants
- CKD Prognosis Consortium (NKF \& KDIGO)
- Steering committee: J Coresh (Chair, co-PI), M Grams (co-PI),

K Matsushita (CVD), S Ballew, A Levey, R Gansevoort, Juan-Jesus Carrero, Michael Shlipak, Dorothea Nitche
Analysis leaders: $Y$ Sang, A Surapaneni

- CKD-EPI Collaboration (eGFR)
- Lesley Inker \& Andrew Levey
- Johns Hopkins \& NYU Langone Health co-investigators \& staff



## "Competition" between diabetes, dementia, and death risk



Preventing and delaying the onset of diabetes can reduce the risk of dementia

## Collaborative Opportunities

- Diabetes prevention
- Estimating late-life impact of mid- and early-life intervention


## Population pyramid of the world from 1950-2200

| 100+ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\square$ Males |  |  |  |  |  |  |  |
| 95 - Fe | - Females |  |  |  |  |  |  |  |
| 90 - Ma | $\square$ Male surplus |  |  |  |  |  |  |  |
| $85 \quad$ Female surplus | $\square$ Female surplus |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| 7570 |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |
| 65 |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |
| 55 |  |  |  |  |  |  |  |  |
| $\stackrel{8}{8} 50$ |  |  |  |  |  |  |  |  |
| 45 |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |
| 80,000,000 | 60,000,000 | 40,000,000 | 20,000,000 | $\begin{gathered} 0 \\ \text { Population } \end{gathered}$ | 20,000,000 | 40,000,000 | 60,000,000 | 80,000,000 |

