

Defining high risk of CKD: Genetic Risk Scores as New Players

Krzysztof Kiryluk MD Associate Professor of Medicine Columbia University

DISCLOSURES

- Research collaborations: AstraZeneca, Visterra, Vanda, Aevi Genomics
- Consulting or advisory boards: HiBio, Vera, Travere

Thousands of GWAS Loci for Complex Traits

Buniello et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics. Nucleic Acids Research, 2019, Vol. 47 (Database issue): D1005-D1012. <u>www.ebi.ac.uk/gwas</u>

Genetic Risk Score (GRS)

 $GRS = \beta_1 * snp_1 + \beta_2 * snp_2 + \dots + \beta_n * snp_n$

Standardized $GRS = (GRS - mean_{ctr}) / sd_{ctr}$

Genome-wide Polygenic Score (GPS)

Extended PRS formulation captures the effects of all ~10M common variants across the genome

$$GPS_i = \sum_{j}^{M} \hat{\beta}_j \times dosage_{ij}$$

Chromosome

Methods to account for linkage disequilibrium (LD):

- P+T P-value thresholding and LD pruning to select independent SNPs
- LD Pred adjusts SNP weights to account for non-independence

Polygenic Risk Models are Phenotype-specific

GWAS for eGFR and CKD

 $N \sim 1$ million

308 genome-wide significant loci ~7% of variance in eGFR

Wuttke et al. Nature Genetics 2019

GWAS for Membranous Nephropathy 3K cases/9K controls

4 genome-wide significant loci ~30% of disease risk

Xie et al. Nature Commun.2020

Major Limitation: Ancestry Bias

80% of GWAS participants are of European ancestry (Europeans represent only 16% of the global population)

GPS accuracy by ancestry relative to Europeans (17 quantitative traits from UKBB)

Reasons for poor cross-ancestry transferability:

- European over-representation in GWAS, bias in array design, bias in imputation
- LD differences between populations
- Differences in the environment (via GxE interactions)
- Actual differences in the genetic architecture (e.g., APOL1)

Martin et al. Nature Genetics 2019.

Electronic Medical Records & Genomics Phase IV (eMERGE-IV)

- Optimization of polygenic scores for 10 common diseases
- Recruitment of 25,000 participants of diverse ancestries for PRS + Monogenic screening
- Return of results with prospective collection of outcomes

Coronary Artery Disease Chronic Kidney Disease Type 1 Diabetes Type 2 Diabetes Atrial Fibrillation Obesity Asthma Breast Cancer Colorectal Cancer Prostate Cancer

emerge network

eMERGE-IV PRS Testing Process (CLIA Lab)

Major challenge: to implement standardized GPS calculations in CLIA-certified testing labs, establish actionable thresholds and standardize reporting.

Lennon et al. Nature Med (in press)

Genomic Integrative Risk Assessment (GIRA)

Lennon et al. Nature Med (in press)

Genome-wide Polygenic Score (GPS) for CKD

Additive effects of APOL1 and polygenic background

Six validation cohorts of African ancestry (4,268 cases and 10,276 controls)

Outcome of CKD stage 3+, covariates: age, sex, diabetes, cohort, and ancestry PCs

Khan et al. Nature Medicine 2022

GPS for CKD: tail cut-off selection

OR=3.0, equivalent to + family history of kidney disease

Khan et al. *Nature Medicine* 2022

Monogenic risk of CKD

Groopman at al. NEJM 2019

Interplay of polygenic and monogenic risk for CKD

Khan et al. *Nature Comm (in press)*

Polygenic risk and ADPKD

Polygenic risk and ADPKD

Outcome of CKD stage 3+, covariates: age, sex, diabetes, cohort, and ancestry PCs

Khan et al. Nature Comm (in press)

Polygenic risk and COL4A-AN

Outcome of CKD stage 3+, covariates: age, sex, diabetes, cohort, and ancestry PCs

Khan et al. Nature Comm (in press)

Summary:

- GPS offers a promising tool for kidney disease risk stratification: top 2% associated with >3-fold higher risk (a family history risk equivalent)
- Monogenic risk, APOL1, and polygenic risk appear to have additive effects; Added value of polygenic risk over family history and other known risk factors still unknown for kidney disease.
- Ongoing work includes improvements in the overall predictive performance and cross-ancestry portability (new GWAS, new methods) and prospective testing of clinical utility (prospective eMERGE-IV).

Acknowledgements

Kiryluk Lab

Lili Liu

Junying Zhang

Francesca Zanoni

Atlas Khan

Cecilia Berrouet

Katherine Xu

Columbia University

Nephrology and Center for Precision Medicine and Genomics: Ali Gharavi, Simone Sanna-Cherchi, Maya Sabatello

Statistical Genetics: Iuliana Ionita-Laza

Glomerular Center: Jerry Appel, Jai Radhakrishnan, Andy Bomback, Pietro Canetta

Transplant Center: David Cohen, Sumit Mohan

Renal Pathology: Vivette D'Agati, Ibrahim Batal

Biomedical Informatics: Chunhua Weng, George Hripcsak

Clinical Genetics: Wendy Chung, Vaidehi Jobanputra

Questions?

