Leicester Diabetes Centre

Committed to Growing International Research, Education & Innovation

University Hospitals of Leicester NHS

NHS Trust

Hurdles for implementation of primary prevention strategies for Chronic Kidney Disease

Kamlesh Khunti University of Leicester, UK

University Hospitals of Leicester **NHS**

NHS Trust

Leicester Diabetes Centre

© Leicester Diabetes Centre at University Hospitals of Leicester NHS Trust, 2018. Not to be reproduced in whole or in part without the permission of the copyright owner.

Disclosures

Consultant: Amgen, AstraZeneca, Bayer, BMS, Boehringer Ingelheim, Janssen, Lilly, MSD, Novartis, Novo Nordisk, Roche, Sanofi and Servier.

Research Support: AstraZeneca, Boehringer Ingelheim, Lilly, MSD, Novartis, Janssen, Novo Nordisk, Roche and Sanofi

Speakers' Bureau: AstraZeneca, Berlin-Chemie AG / Menarini Group, Boehringer Ingelheim, Janssen, Lilly, MSD, Napp, Novartis, Novo Nordisk, Roche and Sanofi

Member of KDIGO CKD in Diabetes Guidelines Member of ADA-KDIGO Consensus Report: Diabetes Management in CKD

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

The prevalence of undiagnosed CKD in type 2 diabetes has been decreasing, but is still over 50% in patients with CKD stage G3a

In the UK, only 39.5% of patients with microalbuminuria had a code for microalbuminuria on their record²

^aThe index date for CKD stage was the first serum creatinine measurement leading to an eGFR <60 mL/min/1.73 m²

eGFR, estimated glomerular filtration rate

1. Bakris GF, et al. Presented at the National Kidney Foundation 2019 Spring Clinical Meetings; May 8th–12th, 2019; Boston, MA, USA; Poster 308; 2. Willis A, et al. *Diabetes Care* 2020. doi:10.2337/dc19-2243 [Epub ahead of print]

Despite universal recommendations, screening of at-risk individuals is inadequate, which may contribute to the lack of diagnosis of CKD stage 3

. .

^aAt-risk patients defined as having a diagnosis of diabetes or high blood pressure; ^bAdequate CKD screening defined as presence of test results for eGFR and urine albumin:creatinine ratio each year. This study shows the frequency of guideline-recommended CKD screening among patients at risk in a retrospective data set from a US clinical laboratory to identify where education efforts may be needed; ^cFrom a chart review on a random sample of 102 patients selected from the 6895 patients with eGFR <60 mL/min/1.73 m² in Rochester, NY, USA between 2003–2004. Of the 102 patients sampled, 85 patients with eGR <50 mL/min/1.73 m² in Rochester, NY, USA between 2003–2004. Of the 102 patients selected from the fast of a start review on a random sample of 102 patients selected from the 6895 patients with eGR <60 mL/min/1.73 m² in Rochester, NY, USA between 2003–2004. Of the 102 patients sampled, 85 patients with eGR <50 mL/min/1.73 m² in Rochester, NY, USA between 2003–2004. Of the 102 patients selected from the fast of a start review on a random sample of 102 patients represented from the fast of a start review on a random sample of 102 patients represented from the fast of a start review on a random sample of 102 patients represented from the fast of the 102 patients with eGR <60 mL/min/1.73 m² in Rochester, NY, USA between 2003–2004. Of the 102 patients with serum creatinine measurements from the Italian hypertensive population followed up by family practitioners in 2005; ^eBased on a cohort of 206,036 Medicare beneficiaries, of which 79,649 had labidentified CKD stage 3 with 2+ qualifying lab results ≥00 to ≤730 days apart indicating CKD, between 2010 and 2011; ^f23,614 patients from TriNetX, a global federated research network providing statistics on electronic health records, with two consecutive eGFR readings indicating CKD stage 3, >90 to ≤730 days apart (2015–2020); ^g250,879 patients from TriNetX, a global federated research network providing statistics on electronic health records, with two co

CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HTN, hypertension

1. Ennis J, et al. Presented at National Kidney Foundation 2020 Spring Clinical Meetings; March 25th–29th, 2020; poster; 2. Ryan TP, et al. Am J Med 2007;120:981–986; 3. Ravera M, et al. Am J Kidney Dis 2011;57:71–77; 4. Diamantidis CJ, et al. BMC Nephrol 2019;20:357; 5. Sultan AA, et al. Presented at American Diabetes Association Virtual 81st Scientific Sessions; June 25th–29th, 2021; poster 988

Diabetes, heart and kidneys interconnected: CKD seen as a cinderella

October 2013)

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

Interventions to slow chronic kidney disease (CKD) progression and/or reduce cardiovascular risk

	G1			G2			G3a			G3b			G4	l I			G5	
A 1	A2	A 3	A 1	A2	A 3	A 1	A2	A 3	A 1	A2	A 3	A1	A	2 A	\3	A 1	A2	A3
							Life	style n	nodifica	tion								
							Sm	oking	cessat	ion								
							F	RAS in	hibition	a								
						Opt	imize	blood	pressu	re cor	ntrol							
								Sta	tins⁵									
							Optimi	ize gly	cemic c	ontro								
							S	GLT2 iı	nhibitor	Sc								
							GLP-1	recep	tor ago	nists	k							
													Treat	metat	oolic	acidosis	S	
			Tre	at under	ving ca	ause, a	void n	ephro	toxins.	and a	diust r	nedica	on do	sages				

Shlipak, M. G et al. Kidney Int 2021;99:34-47

PRIMARY CARE

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

Primary Care Barriers to Management of CKD

٠

٠

٠

Primary Care Barriers to Nephrology Referrals

Greer RC et al. Gen Intern Med. 2019 Jul;34(7):1228-1235.

CKD is a multiple long term condition(multimorbidity)¹

Age-, sex-, and deprivation-adjusted odds ratios for physical and mental comorbidities.^a ^aDisease labels show percentage of people with CKD who also have this disease. CKD = chronic disease.

Khunti K et al BMJ 2023 McRae C et al. *BJGP* 2021;71(704):e243-e249

CKD and Concordant physical MLTCs

McRae C et al. *BJGP* 2021;71(704):e243-e249

CKD and Discordant physical MLTCs

Age-, sex-, and deprivation-adjusted odds ratios for physical and mental comorbidities.^a ^aDisease labels show percentage of people with CKD who also have this disease. CKD = chronic disease.

CKD and Mental health MLTCs

Age-, sex-, and deprivation-adjusted odds ratios for physical and mental comorbidities.^a ^aDisease labels show percentage of people with CKD who also have this disease. CKD = chronic disease.

McRae C et al. BJGP 2021;71(704):e243-e249

CKD and MLTCs

Number of comorbidities by CKD status, N = 1274374

Characteristic	CKD (N= 33 567)	Without CKD (N= 1 240 807)	Unadjusted OR (95% CI)	aOR (95% Cl)a
Mean comorbidities, n (SD)	3.8 (2.2)	1.2 (1.6)	-	-
Total comorbidities, n (%)				
0	614 (1.8)	598 194 (48.2)	1.00	1.00
1	3553 (10.6)	278 807 (22.5)	12.4 (11.4 to 13.5)	6.5 (6.0 to 7.1)
2–3	12 472 (37.2)	248 971 (20.1)	48.8 (45.0 to 53.0)	15.2 (14.0 to 16.5)
4–6	13 000 (38.7)	99 779 (8.0)	126.9 (117.0 to 137.7)	26.6 (24.4 to 28.9)
≥7	3928 (11.7)	15 056 (1.2)	254.2 (233.1 to 277.2)	41.9 (38.3 to 45.8)

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

Effects of an Electronic Software "Prompt" With Health Care Professional Training on CV and Renal Complications (GP-Prompt Study)

Association of continuity of primary care & outcomes in people with CKD

86,475 people with CKD

Level of continuity	HIGH (51.3%)	MODERATE (30.0%)	POOR (18.7%)
OUTCOMES			-
All cause hospitalisation	1.0	1.28 (1.25-1.32)	1.52 (1.47-1.57)
All cause ED visits	1.0	1.42 (1.39-1.46)	1.78 (1.73-1.83)
RAAS inbitors prescribed	1.0	0.99 (0.96-1.02)	1.03 (0.98-1.07)
Statins prescribed	1.0	0.89 (0.84-0.95)	0.8 (0.74-0.86)

Barriers & solutions to the uptake SGLT-2 inhibitors in clinical practice

	Barriers	Solutions
	Complexity of current guidelines pertaining to SGLT-2 inhibitor use	Improve clarity of guidelines and provide further information on how and when best to apply them
\bigcirc	Safety concerns regarding adverse eve associated with SGLT-2 inhibitors and la of communication between clinicians	
RAN	Patient characteristics affecting prescription rates	Highlight benefits and risks to patients and facilitate diabetes self-management; improve clinician awareness of implicit biases regarding patient characteristics; seek to remove financial barriers and patient out-of-pocket costs
	Higher comparative cost of SGLT-2 inhibitors versus other glucose-loweri medications	

Influence of early referral to a nephrologist on kidney function decline in patients with diabetes and CKD

Better blood pressure control, slower eGFR decline, higher use of RAASi as well as less use of NSAIDs in CKD patients when treated by nephrologists

	Nephrolo	ogist care	PCP care		
	Baseline	Final	Baseline	Final	
n/o patients	5	52	6	5	
Age	62.5	± 9.3	62.8 ± 9.9		
Duration of diabetes	14.7	± 8.4	14.2 ± 8.0		
Duration of hypertension	10.6 ± 9.9		10.3 ± 8.8		
sysBP	140 ± 30	130 ± 21	140 ± 19	145 ± 23	
diaBP	76 ± 14	70 ± 10	79 ± 8	77 ± 11	
Albuminuria	158 (62-451)	216 (97-619)	109 (50-509)	389 (92-728)	
eGFR	83.8 ± 26.1	80.4 ± 35.5	78.6 ± 28.1	66.6 ± 29.9	
Use of ACEs	25 (48)	44 (90)	35 (53)	37 (70)	
Use ARBs	1 (2)	22 (45)	0 (0)	2 (4)	
Use of Statins	2 (4)	21 (43)	10 (16)	5 (9)	
Use of NSAIDs	6 (11)	0 (0)	3 (5)	17 (32)	

ACE, anigotensin-converting-enzyme; ARB, angiotensin-receptor-blocker, CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; NSAID, non-steroidal antiinflammatory drug; RAASi, renin-angiotensin-aldosterone system inhibitor

Martinez-Ramirez HR et al. Am J Kid Dis 2006;47:78

24

Components of a successful cardio-renalmetabolic care model at an institutional level

Learning from models of care for diabetes: Delivery of primary care 1990s

Secondary Care (12.4%)

Khunti K et al. JRSM 2000

Delivery of primary care 2023

Primary Care (95%)

Secondary Care (5%)

Seidu S et al. Diabet. Med. 2017; 34: 748–750 Boels AM, Primary Care Diabetes 2017; 11: 71–77.

Leicester Commissioning Pathway: Super Six and Necessary Nine!

Model of care is safe and cost-effective

Clinical outcomes from the RCT. [7]

Outcome	Mean difference (95% CI)	p-value
Non-elective bed days		
Diabetes as a primary diagnosis	2.20 (-0.92, 5.32)	0.14
Diabetes as a primary or secondary diagnosis	2.78 (-2.71, 8.27)	0.27
First outpatient attendance	0.02 (-0.47,0.52)	0.92
Admissions with type 2 diabetes complications	0.30 (-0.85, 1.45)	0.55

Cost per person/year in core practices Cost per person/year in enhanced practices Annual saving per patient £255 (95% CI 175, 380) £173 (95% CI 96, 291) -£83 (95% CrI -148,-28)

Savings if rolled out in UK

-£276,200,000 (95% CI -495,400,000, -94,480,000).

Disease management program of heart failure in primary care 1316 Patients with diagnosis of CHD and HF 10 10 \rightarrow Intervention Control **Trained Nurse led GP** Practices **GP** Practices intervention \odot l@¦ $\overline{\mathcal{O}}$ \odot

↑ Quality

Significantly more patients in the intervention group with unconfirmed diagnosis of HF had improved outcomes

↑ Management of

(CI 1.05-2.37)

COST EFFECTIVE

£13,158 PER QALY

↑ Confirmed diagnosis

of LVSF or 4.69

(CI 1.88-11.66)

Khunti K et al. Heart. 2007; 93:1398-1405 Turner DR et al. Heart. 2008; 94: 1601-1606

MI patient prescribe

Beta Blocker or 1.43

↑ Adequate manageme

of BP or 1.61

(CI 1.22-2.13)

Collaborative care approach: Primary care, cardiology, nephrology, endocrinology

GPs and specialists must end the "them and us" divide

Clare Gerada used her final speech as chairwoman of the RCGP to call for GPs and specialists to work together to improve continuity of patient care, as **Tom Moberly** reports

GPs and hospital doctors will have to change the way they work together if the health service is to improve continuity of care for patients, Clare Gerada believes. Giving her final speech as chairwoman of the Royal College of General Practitioners at the college's annual conference in Harrogate last week, Gerada said that the "them and us" divide between GPs and hospital energialists had to end Sha alco entrance, will become a thing of the past," she said. "In future, we will be working together in one integrated system of care."

She argued that all providers of health and social care services within a particular geographical area should pool resources, with primary, community, social, and acute care funding merged into one budget. This would, she argued, allow real integration

One of the things that must change is our relationship with our specialist colleagues

about pilot schemes to extend general practices' opening hours. Hunt spoke of his far reaching vision for general practice moving from "reactive to proactive" service delivery. "I hope that history will judge me to be

Integrated multidisciplinary model of care for CKD

Outline

- Unmet need in CKD
- Evidence for CKD and CVD prevention
- Barriers to CKD Care
- Potential solution CKD Model of Care
- Summary

Integrated care: the key to management of CKD

- Patient engagement, education and activation
 - Use of new technologies?
- Education of health care professionals
 - Breakdown of specialty barriers
 - Integration of medical workforce training
- New ways of working
 - Virtual clinics
 - New specialties (cardiorenaldiabetologist...?)
 - Primary care-based specialists?

Summary

- GPs/PCPs function as gatekeepers in the area of chronic diseases
- A greater emphasis on detecting CKD and management in primary care
- Management of CKD patients in primary care is complex and is influenced by physician-bound considerations related to individual knowledge and perception of the importance of CKD
- Strategies are needed to improve GPs/PCPs understanding of the concept of CKD by education, innovative interventions and integrated care programmes

Thank you

www.leicesterdiabetescentre.org.uk

www.facebook.com/LeicesterDiabetesCentre

