

CONTROVERSIES AND TRENDS IN PTH CONTROL (ADULTS) PART 1

Dr. Jordi Bover M.D., Ph.D., F.E.R.A.

University Hospital Germans Trias i Pujol (Can Ruti) Badalona (Barcelona) Spain

DISCLOSURES

CHRONIC KIDNEY DISEASE-MINERAL AND BONE DISORDER

- ABBVIE
- AMGEN
- VIFOR-FRESENIUS-PHARMA (CSL)
- SANIFIT (CSL)
- SANOFI
- RUBIO
- BAYER
- ASTRA-ZENECA

CKJ REVIEW

Evidence in chronic kidney disease-mineral and bone disorder guidelines: is it time to treat or time to wait?

Jordi Bover¹, Pablo Ureña-Torres², Silvia Mateu¹, Iara DaSilva¹, Silvia Gràcia¹, Maya Sánchez-Baya¹, Carolt Arana¹, Leonor Fayos¹, Lluis Guirado¹ and Mario Cozzolino ® ³

Bover J. et al. Clin Kidney J 2020

Chapter 4.2. Treatment of abnormal PTH levels in CKD-MBD

5 guidelines / 8 statements:

2 (2B): G5D treatment & PTX 4 (2C) 2 (NG): G3a-G5 not on dialysis

Practice is essentially based on VERY PLAUSIBLE ASSOCIATIONS (co-correlation, residual confounding, conf by indication, biases...) but lacking RCT's

Even ≠ meta-analysis provide contradictory results

Evidence grades	# of statements (Glomerular)	%	# of statements (Transplant)	%	# of statements (CKD-MBD)	%
1A	6	3.1%	3	1.2%	1	2.2%
18	22	11.5%	15	6.2%	2	4.3%
1C	17	8.9%	18	7.5%	3	6.5%
1D	0	0	15	6.2%	0	0
Total GRADE 1 (recommendations)	45	<mark>23.5%</mark>	51	<mark>21,1%</mark>	6	<mark>13%</mark>
2A	0	0	1	0.4%	1	2.2%
2B	10	5.2%	11	4.6%	6	13%
2C	51	26.6%	59	24.5%	17	37%
2D	60	31.3%	76	31.5%	4	87%
Total GRADE 2 (suggestions)	121	<mark>63.1%</mark>	147	<mark>61%</mark>	28	<mark>60.9%</mark>
Not Graded	26	13.5%	43	17.8%	12	<mark>26.1%</mark>
Total # of statements	192	100%	241	100%	46	100%

May any single manouver really improve survival in CKD? (Only dialysis/HDF/RT)

CKD complex, PTH also, do not expect answers but questions & opinions to be further discussed

PTH: ≠ IDEAL TARGETS FOR ≠ ORGANS? PRIMARY GOAL?

Retrolocia 2022;42(\$3):1-37

Revisión

Recomendaciones de la Sociedad Española de Nefrología para el manejo de las alteraciones del metabolismo óseo-mineral en los pacientes con enfermedad renal crónica: 2021 (SEN-MM)

José-Vicente Torregrosa^{a,*}, Jordi Bover^b, Mariano Rodríguez Portillo^c, Emilio González Parra^d, María Dolores Arenas^e, Francisco Caravaca^f, María-Luisa González Casaus^g, Alejandro Martín-Malo^h, Juan Francisco Navarro-Gonzálezⁱ, Víctor Lorenzo^j, Pablo Molina^k, Minerva Rodríguez¹ y Jorge Cannata Andia^m

nefrología. Revista de la Sociedad Española de Nefrología www.revistanefrologia.com

NEFROLOGIA. 2022;42(6):645-655

Review

Silver jubilee: 25 years of the first demonstration of the direct effect of phosphate on the parathyroid cell

Jordi Bover^{a,*}, Pedro Trinidad^b, Aquiles Jara^c, Jordi Soler-Majoral^a, Alejandro Martín-Malo^d, Armando Torres^e, João Frazão^f, Pablo Ureña^g, Adriana Dusso^h, Carolt Aranaⁱ, Fredzzia Graterol^a, Gregorio Romero-González^a, Maribel Troya^a, Diana Samaniego^a, Luis D'Marco^j, José Manuel Valdivielso^k, Elvira Fernández^{k,l}, María Dolores Arenas^m, Vicente Torregrosaⁱ, Juan F. Navarro-Gonzálezⁿ, María Jesús Lloret^o, J.A. Ballarín^o, Ricardo J Bosch^p, José L. Górriz^q, AGL de Francisco^r, Orlando Gutiérrez^s, Jordi Ara^a, Arnold Felsenfeld^t, Antonio Canalejo^u, Yolanda Almadén^v

CHAPTER 4.2 TREATMENT OF ABNORMAL PTH LEVELS IN CKD-MBD

4.2.1: In patients with CKD **G3a-G5** not on dialysis, the optimal PTH level is not known. However, we <u>suggest</u> that patients with levels of **iPTH** <u>progressively rising or persistently above</u> the UNL for the assay be evaluated by modifiable factors, including <u>hyperphosphatemia, hypocalcemia, high P intake, and VD deficiency (2C)</u>.

Should PTH actually be the primary target? PTG activity (ALP/bALP...)

Should the primary goal be P according to many PHENOTYPE studies?

Progressively rising iPTH levels (TRENDS!!) should be treated, persistently above?

How? Modifiable factors first

High (excessive) P intake, hyperphosphatemia, VD deficiency, hypocalcemia

CHAPTER 4.2 TREATMENT OF ABNORMAL PTH LEVELS IN CKD-MBD

4.2.1: In patients with CKD G3a-G5 not on dialysis, the optimal PTH level is not known. However, we suggest that patients with levels of iPTH progressively rising or persistently above the UNL for the assay be evaluated by modifiable factors, including hyperphosphatemia, hypocalcemia, high P intake, and VD deficiency (2C).

High (excessive) P intake, hyperphosphatemia, VD deficiency, hypocalcemia

Is NATIVE VD really required/effective or it is just a proxy of "overall health"?

VITAL, D-HEALTH, VITAL by eGFR; D2d, VITAL-DKD VITAL –all cause & cancer-Meta-analysis CKD. Last: Yeung et al. AJKD 2023; VITALE Am J Transplant 2023 Some small RCT's CKD: vascular endotelial function, PWV, Vervloet MG. et al Kidney Int 2023

Shall calcidiol levels be measured (association), ↑ PTH surrogate?

Are higher targets needed in CKD patients? (Strugnell SA. Am J Nephrol 201; 50 ng/ml?) Upper limit?

Native VD + Active VD? Sequential? Upregulation CYP24A1, ARMOR

PTH TARGET ? NOT AIMING TO NORMALIZATION (POPULATION-WISE)?

KDOQI 2003

Table 15. Target Range of Intact Plasma PTH by Stage of CKD								
CKD	CKD GFR Range Target "intact" PTH (pg/mL							
Stage	(mL/min/1.73 m ²)	[pmol/L])						
3	30-59	35-70 [3.85 7.7 pmol/L] (OPINION)						
4	15-29	70-110 [7.7-12.1 pmol/L] (OPINION)						
5	<15 or dialysis	150-30/ [16.5-33.0 pmol/L]						
(EVIDENCE)								

ADAPTIVE RESPONSE + HYPORESPONSIVENESS to PTH

(= other hormones and which is NOT just a consequence of PTH fragments!!)

Jordi Bover^{a,*}, Carolt Arana^a, Pablo Ureña^b, Armando Torres^c, Alejandro Martín-Malo^{d,e}, Leonor Fayos^a, Verónica Coll^a, María Jesús Lloret^a, Jackson Ochoa^a, Yolanda Almadén^{f,g}, Lluis Guirado^a, Mariano Rodríguez^{d,e}

Nefrologia 2021

No suppression!

CHAPTER 4.2 TREATMENT OF ABNORMAL PTH LEVELS IN CKD-MBD

4.2.2: In <u>adult</u> patients with CKD G3a-G5 not on dialysis, we <u>suggest</u> that CTR and VD analogs not be routinely used (2C). It is reasonable to reserve the use of CTR and VD analogs for patients with CKD G4-G5 with severe and progressive HPT (Not Graded).

	Original Report: Laboratory Inv	restigation											
Nephrology	Am J Nephrol 2013;37:239-248 DOI: <u>10.1159/000346846</u>	Received: November 26, 2012 Accepted: January 7, 2013 Published online: March 5, 2013		CKD stage	Study	Risk ratio	Lower limit	Upper limit	p value	Adjusted risk ratio	Relative weight, %	All-cause mortality Risk ratio and 95% CI	
Vitamin D Treat Chronic Kidney Review and Me Flore Duranton ^a Maria E. Roc Jean-Pierre Daurès ⁶ Angel A	tment and Mortality Disease: A Systema ta-Analysis driguez-Ortiz ^c Yohan Duny ^b Mariano rgiles ^a	in tic ^{Rodriguez^c}		HD HD HD HD HD HD HD HD HD HD HD HD HD	Taniguchi, 2010 [36] Naves-Díaz, 2008 [32] Wolf, 2008 [40] Shoji, 2004 [34] Melamed, 2006 [31] Kalantar-Zadeh, 2006 [27, 28] Teng, 2005 [37] Tentori, 2006 [38] Jean, 2011 [26] Tentori, 2009 [39] Overall (I ² = 94%)	0.54 0.55 0.66 0.70 0.74 0.75 0.80 0.83 0.89 0.89 0.89	0.51 0.49 0.50 0.44 0.56 0.71 0.76 0.76 0.76 0.74 0.84 0.64	0.57 0.62 0.86 1.14 0.98 0.79 0.84 0.91 1.07 0.94 0.83	<0.001 <0.001 0.002 0.15 0.03 <0.001 <0.001 0.22 <0.001 < 0.001	Yes Yes No Yes Yes Yes Yes Yes Yes	11.8 11.0 8.0 4.7 7.9 11.8 11.8 11.4 9.8 11.8		
Nothing should be used ro but waiting for "SEVERE"? Ureña-Torres P et al NDT 2022, Isakova	eutinely (exceedingly car a T et al KDOQI AJ	utious, PRIMO an KD 2017	d OPERA?)	preHD preHD preHD preHD Overall	Kovesdy, 2008 [29] Shoben, 2008 [33] Sugiura, 2010 [35] Overall (I ² = 0%) (I ² = 97%)	0.69 0.76 0.80 0.73 0.73	0.55 0.58 0.44 0.55 0.65	0.86 1.00 1.46 0.98 0.82	0.001 0.05 0.46 0.04 < 0.001	No Yes Yes	43.8 39.4 16.8		2

Targets not defined \rightarrow decreased atention to MM in predialysis

Native VD vs extended release calcifediol vs calcitriol and VD analogs?

Calcimimetics in non-dialysis CKD?

Primary HPT may coexist

THE RISK OF MEDICALLY UNCONTROLLED SHPT DEPENDS ON PTH LEVELS AT HD INITIATION, INTERNATIONAL AND RACIAL DIFFERENCES

K. Chan et al Kidney Med 2019

ALSO "LOW" PTH LEVELS MAY BE OF CONCERN

BTM/PTH; FGF23/PTH; Wnt-inhibitors/PTH Tominaga N et al BMC Nephrol 2021

Tabibzadeh N. et al. Nephrol Dial Transplant 2021

THE RISK OF MEDICALLY UNCONTROLLED SHPT DEPENDS ON PTH LEVELS AT HD INITIATION, INTERNATIONAL AND RACIAL DIFFERENCES

Apart of potential ethnic differences:

Is it the result of different and/or inappropriate early diagnosis and follow-up of CKD?

K. Chan et al Kidney Med 2019

Prospective cohort

Independent effects of secondary hyperparathyroidism and hyperphosphataemia on chronic kidney disease (CKD) progression and cardiovascular (CV) events: an analysis from the NEFRONA cohort

Background

Secondary hyperparathyroidism (SHPT) is a complication of CKD

It is not known whether SHPT is associated with CV events and CKD progression independently of other associated changes like hyperphosphataemia

Magagnoli L. et al, Nephrol Dial Transplant 2023 (older, PTH & P)

ORIGINAL ARTICLE

Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease

Yang Xu¹, Marie Evans ¹, Marco Soro², Peter Barany³ and Juan Jesus Carrero ¹

CKJ **2021**

Covariates		HR (95% CI)
eGFR (per SD decrease), mL/min/1.73 m ²		1.89 (1.72-2.08)
Diabetes		1.38 (1.18-1.62)
Albumin (per SD increase), g/L	-	0.91 (0.85-0.99)
Loop diuretic	_ _ _	1.29 (1.1-1.51)
UACR (per SD increase), mg/mmol	•	1.16 (1.1-1.23)
Calcium (per SD increase), mmol/L	•	0.83 (0.76-0.9)
Cardiovascular disease		1.12 (0.95-1.32)
Hypertension		1.14 (0.94-1.38)
Beta blocker		1.16 (0.99-1.35)
Age (per SD increase), year	•	0.83 (0.76-0.9)
ACEis/ARBs		1.16 (0.97-1.38)
Female -	-	0.77 (0.66-0.9)
Phosphate (per SD increase), mmol/L	-0-	1.06 (0.99-1.14)
LDL-cholesterol (per SD increase), mmol/L	-0-	1.05 (0.98-1.13)
Thiazide diuretic		1.14 (0.87-1.49)
Hemoglobin (per SD increase), g/L	-	0.96 (0.88-1.04)
0	1 2 3	
Lower SHPT risk	k Higher SHPT risk →	

FIGURE 2: Forest plots depicting baseline factors associated with the risk of sHPT. Predictors are arranged from higher (on top) to lower (at the bottom) relative contribution to the full model.

Incident SHPT was associated with:

Lower values: Geng S. et al. Osteoporos Int 2019 Bhuriya R. et al Am J Kidney Dis 2009

Kovesdy CP et al Kidney Int 2008

↑ risk of death:
 ↑ risk of MACE:
 ↑ risk of CKD progression:
 5.0 fold (3.5-7.2)
 ↑ risk of fractures:
 1.3 fold (1.5-2.2)

CHAPTER 4.2 TREATMENT OF ABNORMAL PTH LEVELS IN CKD-MBD

- 4.2.3: In patients with CKD G5D, we <u>suggest</u> maintaining PTH levels in the range of approximately 2 to 9 times the UNL for the assay (2C). We suggest that <u>marked changes</u> in PTH levels <u>in either direction within this range</u> prompt an initiation or change in therapy to avoid progression to levels outside of this range (2C).
- 4.2.4: In patients with CKD G5D requiring PTH-lowering therapy, we <u>suggest</u> <u>calcimimetics, CTR, or VD analogs</u> (<u>alphabetical order</u>), or a <u>combination (BEST?</u>) of calcimimetics with CTR or VD analogs (2C).

Calcimimetics vs CTR/VD analogs: other MM abnormalities, adherence, availability and reimbursement policies? Economical Issues?

Calcimimetics first? Cinacalcet vs etelcalcetide (IV) / evocalcet / upacicalcet (IV) ...

Different targets? Is RELATIVE HYPOparathyroidism less of a problem with CM?

PTX?

COMPARISONS WITH INTERMEDIATE OUTCOMES IN RCT'S

•

Shoji, T. et al, Clin J Am Soc Nephrol 2021

Comparative Effects of Etelcalcetide and Maxacalcitol on Serum Calcification Propensity in sHPT

425 dialysis patients

T50 increases (decreases calcification propensity) for both but the increase was greater with etelcalcetide

There was no difference in handgrip strength or cognition between the two drugs.

Dörr K et al. Circulation Res 2021

No significant difference was found in T50

ALFACALCIDOL IN DIALYSIS PATIENTS WITHOUT (NOT OVERT) SHPT

J-DAVID RCT Shoji T. et al. JAMA 2018

Japan, 976 prevalent HD, without sHPT = PTH ≤ 180 pg/ml (JSDT), 0.5 alfacalcidol/day PTH 85 (45-130) / 86 (47-127) 80% Ca-P binder, 68% dialysis bath 1.5 mmol/L Crossover!!

> J-DAVID post-hoc on CV outcomes according to ALP Oka T etal Sci Rep 2022

959 available ALP [(234 (183-296) U/L]

Alfacalcidol did not affect CV outcomes irrespective of "bone turnover" status

TARGET: LOWEST RISK OF MORTALITY IN DIALYSIS PATIENTS (EUROPE)

Floege J et al . Nephrol Dial Transplant 2011

Fractures = limits limori et al Nephrol Dial Transplant 2012

Fernández-Martín JL et al. Nephrol Dial Transplant 2015

Lamina C et al. Association of changes... (AROii) Nephrol Dial Transplant 2019 60% < 239; 5% > 710

 \uparrow PTH OK, \downarrow PTH trend (unpowered), cumulative risk

Population-wise

RECAP (OPINION)

- Evidence levels in all nephrology fields (beyond CKD-MBD too) are low/very low. 1st = Early diagnosis and ↓ progression (CKD KDIGO containing 1A-1B evidences)
- Despite its limitations, PTH (trends) remain as an important marker of CKD-MBD.
- Modifiable factors: High (excessive) P intake (first), hyperphosphatemia, VD deficiency (个 PTH, FR, special populations), hypocalcemia (last)

RECAP (OPINION)

- Better balance required between waiting for "severe" sHPT vs avoid iPTH normalization. "Progressively increasing" & compromise 2-3X times UNL at dialysis initiation?. Order?: daily native → ERC? → Active VD? G5D 5-6X?
- Targets are demanded by clinicians/providers but INDIVIDUALIZATION is necessary. OPORTUNITY TO INDIVIDUALIZE CARE by previously unaccounted factors such as AGE, GENDER, DIABETES, ETHNICITY, GEOGRAPHICAL AREA.
- Regarding PTH...would the JSDT and Prof. Fukagawa convince us why "lower may be better", in fact "one size does not fits all"

CONTROVERSIES AND TRENDS IN PTH CONTROL PART 2

Masafumi Fukagawa, MD, PhD Tokai University Isehara, Japan

DISCLOSURES

Chronic Kidney Disease-Mineral and Bone Disorder

- Kyowa Kirin: honoraria, consultancy, research grant
- Ono: honoraria, consultancy
- Kissei: honoraria
- Sanwa Kagaku: honoraria, consultancy
- Torii: honoraria
- Bayer Japan: honoraria

One size fits all?

Table 1. Different target ranges for dialysis patients

Guideline	Phosphorus	Calcium (corrected)	Intact PTH	
KDOQI	3.5–5.5 mg/dL	8.4–9.5 mg/dL	150–300 pg/mL	
KDIGO	Normal range	Normal range	2–9 times the upper limit	
JSDT*	3.5–6.0 mg/dL	8.4–10.0 mg/dL	60–240 pg/mL	

PTH, parathyroid hormone; KDOQI, Kidney Disease Outcomes Quality Initiative; KDIGO, Kidney Disease Improving Global Outcomes; JSDT, Japanese Society for Dialysis Therapy. * 2013 version.

#Japan: Lab at first dialysis session of the week

What are the reasons for such a discrepancy?

Fukagawa et al: Kidney Dis, 201

SHPT management among DOPPS countries

Chan K: Kidney Med, 2019

Adv Ther (2020) 37:2748–2762 https://doi.org/10.1007/s12325-020-01359-1

ORIGINAL RESEARCH

Pattern of Laboratory Parameters and Management of Secondary Hyperparathyroidism in Countries of Europe, Asia, the Middle East, and North America

Mario Cozzolino 🕞 · Eugeniy Shilov · Zuo Li · Masafumi Fukagawa · Saeed M. G. Al-Ghamdi · Ronald Pisoni · Brian Bieber · Bhadrish Vallabh · Deepa H. Chand

PTH > 600 pg/ml

а

PTH distribution in Japan at the end of 2021 – JSDT Renal Data Registry –

The results in the current study were derived from the split data from the WADDA system of the JSDT by the authors. However, the interpretation and reporting of these data are the responsibilities of the authors and in no way should be seen as official policies or interpretations of the JSDT.

Derived from the split data from the WADDA system of the JSDT

Reasons for the different targets of PTH control

- Race
- Available drugs
- Medical Care System
- Purposes of PTH Control
- Individualization?

Survival Curve of Dialysis Patients (DOPPS)

Racial Difference BMI Food Adherence **Dialysis Protocol** Time Methods Dialysate Low inflammation Water purity Vascular access More intensive Care Patient-doctor contact Routine laboratory tests

Excess Risk of Cardiovascular Events in Patients in the United States vs. Japan with Chronic Kidney Disease is Mediated Mainly by Left Ventricular Structure and Function

Methods

3) Investigate mediation effects for the difference in the outcomes between cohorts

Imaizumi et al, 2023

5-year follow up

CONCLUSION

Death

American patients with CKD are more likely to develop CVD events and death before ESKD as compared to Japanese counterparts. Differences in baseline TTE findings mediate the excess risks of CVD events in US patients over Japanese patients.

Kidney Dis DOI: 10.1159/000470909 Received: January 9, 2017 Accepted: March 14, 2017 Published online: April 13, 2017

Chronic Kidney Disease-Mineral and Bone Disorder in Asia

Masafumi Fukagawa^a Hirotaka Komaba^{a, b}

^a Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, and ^bThe Institute of Medical Sciences, Tokai University, Isehara, Japan

Tenapanor

CJASN 2023

AJKD,2023

Drug class	Drugs (generic name)	Japan	Corea	China	Taiwan	Hong Kong	Singapore	Malaysia	Thailand
VDRA	Oral Rocaltrol [®] (calcitriol) Alfarol [®] (alfacalcitriol) Hornel [®] /Fulstan [®] (falecalcitriol) Calcitriol generics	3 3 3 S			1 1 1	J J	J J	J J	1
	IV Calcijex [®] (calcitriol) Zemplar [®] (paricalcitol) Oxarol [®] (maxacalcitol) Calcitriol generics	\$ \$ \$			1	√ √	1	1 1 1	✓
P-binder	Renagel [®] /Phosblock [®] (sevelamar HCl) Renvela [®] (sevelamar CO ₃) Kiklin [®] (bixalomer) Riona [®] /Nephoxil [®] (ferric citrate) P-Tol [®] /Velphoro [®] (sucroferric oxyhydroxide) Calcium-based phosphate-binder generics	\$ \$ \$ \$		\ \ \	√ √ √	J J	5 5 5	√ √	✓ ✓
Calcimimetics	Regpara [®] (cinacalcet) Parsabiv [®] (etelcacetide)	✓ ✓ #	1	1	1	✓	✓	1	1

Table 3. Drugs available for chronic kidney disease-mineral and bone disorder in Asian countries and regions

IV, intravenous. Shaded lines, no reimbursement. [#] Approved but not yet launched, as of December 2016.

Calcimimetic use in Japan at the end of 2019 – JSDT Renal Data Registry –

The results in the current study were derived from the split data from the WADDA system of the JSDT by the authors. However, the interpretation and reporting of these data are the responsibilities of the authors and in no way should be seen as official policies or interpretations of the JSDT.

Derived from the split data from the WADDA system of the JSDT

Purposes of PTH Control in CKD

- Easier control of serum phosphorus and calcium level
- Bone turnover
 - Bone fracture
 - Vascular calcification
- Prevent the progression of parathyroid hyperplasia
- Energy wasting
- Survival
- CV risk

PTH levels and Body Weight Loss in Dialysis Patients

Model 1 adjusted for country, study phase, and electronic health record data source (US phases 4–6 only), accounting for facility clustering. Model 2 adjusted for covariates in Model 1 plus age, sex, time on dialysis, 13 comorbid conditions, single-pool *Kt/V*, and dry weight. Model 3 adjusted for covariates in Model 2 plus albumin, hemoglobin, creatinine, calcium, and phosphorus. Model 4 adjusted for covariates in Model 3 plus calcium-based binder, sevelamer, lanthanum, other phosphate binders, active vitamin D derivatives, and calcimimetics.

Komaba H et al. J Cachexia Sarcopenia Muscle, 2021

PTH and Fracture Risk

Secondary HPT and mortality

Tentori F et al. Am J Kidney Dis 52, 2008

Taniguchi M et al. Ther Apher Dial 17, 2013

PTH and Survival (JRDR data)

All-cause mortality

Goto S et al. Nephrol Dial Transplant, in press

Kaplan-Meier cumulative incidence of death

Komaba H et al. J Clin Endocrinol Metab, 2022

Prognosed and PTH Tertile after PTx

	PTx		Cinacalcet				
	Median (IQR) posttreatment		Median (IQR) posttreatment		Hazard		
Postoperative PTH	intact PTH (pg/mL)	n	intact PTH (pg/mL)	n	ratio	95% CI	P value
Tertile 1 (<35 pg/mL)	12 (7–20)	304	231 (148–401)	912	0.56	0.42-0.74	<0.001
Tertile 2 (35-163 pg/mL)	83 (53–121)	304	232 (140–383)	912	0.73	0.55–0.95	0.022
Tertile 3 (≥164 pg/mL)	321 (226–522	304	213 (135–343)	912	1.02	0.79–1.30	0.90

The lower, the better?

Exceptions?: Hypercalcemia, Immediate KT candidates

Ethnic differences in bone and mineral metabolism in healthy people and patients with CKD

Vanda Jorgetti¹, Luciene M. dos Reis¹ and Susan M. Ott²

Kidney Int, 2014

Table 1 | Main differences in bone and mineral metabolism parameters in black individuals compared with white individuals

	Normal or early CKD	Late stage CKD,		
		including dialysis		
Disease/mortality	More rapid progression	Better survival		
Serum calcium	Similar	Lower		
Serum phosphate	Similar	Lower		
Intestinal calcium	More efficient			
absorption				
Urine calcium	Lower excretion			
Serum 25(OH)D	Lower	Lower		
Serum 1,25(OH) ₂ D	Higher			
Serum PTH	Higher	Higher		
Serum FGF23	Similar or lower	Lower		
Fracture rates	Lower	Lower		
Bone mineral density	Higher	Higher		
Bone formation rates	Lower	Higher		
Bone volume	Higher or similar	Higher		
Bone response to PTH	Less resorption	Less resorption		
Fracture association with	Fewer fractures with low			
vitamin D level	vitamin D			
Vascular calcifications	Fewer in diabetic patients	Fewer or similar		
Hospitalization for	Higher (or similar with	Fewer		
cardiovascular disease	equal access to care)			

Bone metabolism in European and Japanese patients with end stage kidney disease: a comparative study

Tokai Cohort (Mongolian)

Leuven Cohort (Caucasian)

Hypothesis: Response to PTH is better in Japanese patients

The Journal of Clinical Endocrinology & Metabolism, 2022, **00**, 1–10 https://doi.org/10.1210/clinem/dgac522 Advance access publication 7 September 2022 **Clinical Research Article**

Asian vs

Caucasian

Lower Bone Turnover and Skeletal PTH Responsiveness in Japanese Compared to European Patients on Hemodialysis

Pieter Evenepoel,^{1,2,*} Hanne Skou Jørgensen,^{1,3,*} Hirotaka Komaba,^{4,*} Marc Vervloet,^{7,8,†} Etienne Cavalier,^{9,†} and Masafumi Fukagawa^{4,†}

o/full line=Belgian, x/dashed line=Japanese

Lower response to PTH in Japanese

A Special Group with a much lower basal PTH level?

???

CONTROVERSIES AND TRENDS IN ADULT PTH CONTROL

• Should the PTH target ranges be Individually optimized based on the control purposes and patients' backgrounds?

Age Sex Race Diabetes High risk patients

Questions and Comments

