

TRIALS TO BUILD AN EVIDENCE BASE FOR PHOSPHATE MANAGEMENT IN ESKD Myles Wolf, MD, MMSc

DISCLOSURES

- Consultant: Bayer, Enyo, Launch, Jnana, Pharmacosmos, Reata
- Scientific Advisory Board: Unicycive, Walden
- Board of Directors: Akebia

Phosphate & mortality: ESRD, CKD, non-CKD

Block GA, AJKD 1998; Block GA, JASN 2004; Kestenbaum B, JASN 2005; Dhingra R, Arch Intern Med 2007

Phosphate and arterial calcification

Hemodialysis: serum phosphate & mortality

Based on *preclinical* & <u>observational</u> data, <u>opinion-based</u> guidelines: Maintain P <5.5 mg/dl using binders, diet

But...there is no proof that lowering high phosphate in individual patients helps improve their outcomes!

HD: Ideal Setting for Pragmatic Trials

- Highly accessible study population
- Frequent & regular clinical encounters
- Highly granular & uniform data collection as part of routine clinical care
- Infrastructure of dialysis provider organizations allows for:
 - Centralized implementation
 - Inclusion of large number of facilities with broad geographic distribution
- Many unanswered questions about fundamental aspects of dialysis care

Duke Nephrology

HiLo: Pragmatic trial of higher vs lower P in HD

What is the best blood level of phosphate for people with kidney failure on dialysis? A Pragmatic Trial Sponsored by the

A Pragmatic Trial Sponsored by the National Institutes of Health

What is HILO?

HiLo is a clinical research study on how best to manage blood phosphate levels in patients on dialysis. Researchers will compare how participants feel, how often they are hospitalized, and how long they live based on the level of phosphate in their blood.

Why HILO?

Pragmatic randomized trial of High Or Standard PHosphAte Targets in End-stage kidney disease

Population Health Research Institute

HEALTH THROUGH KNOWLEDGE

www.phri.ca

High-level comparison of trial designs

HijLo

- Pragmatic
- Targets: <5.5 vs >6.5 mg/dl
- Non-study clinicians drive Rx
- Data collected: clinical only
- Outcome: Hierarchical win ratio
 - Death, all cause
 - Hospitalizations, all cause
- No outcome adjudication

PHISPHATE

- Pragmatic
- Targets: <4.65 vs 6.2–7.75 mg/dl
- Non-study clinicians drive Rx
- Data collected: clinical only
- Outcome: Time to first event
 - CV death, non-fatal MI, coronary revasc, stroke, PAD event
- Outcomes are adjudicated

Primary outcome: All-cause mortality & hospitalization

- All-cause mortality is a gold standard outcome in clinical trials.
- Hospitalization is also extremely important to all stakeholders: patients, families, clinicians, dialysis providers, payers/Medicare.
- HyperP contributes to multiple complications that result in hospitalization.
- Hospitalization is an accepted endpoint in other therapeutic areas.
- Will be collecting real-time outcomes using EHR data.

Longitudinal follow-up time

Win ratio in use: HEART-FID Trial

A Primary Outcome, Assessed as the Unmatched Win Ratio

Unmatched win ratio (based on the first imputed data set) = (total wins)/(total losses)=1,229,048/1,111,664=1.11 (99% CI, 0.99-1.23) Overall unmatched win ratio, 1.10 (99% CI, 0.99-1.23; P=0.02)

Informed Consent

Informed Consent needed: the "research involves more than minimal risk"

- We use "eConsent:"
 - A relatively new pragmatic approach to clinical trial design
 - Informed consent obtained electronically by smart phone, tablet or computer
 - HiLo offers both written and video-based consent materials
 - Dialysis facility staff are asked to refer patients to the HiLo website

At 10% enrollment...

• Imbalance in baseline characteristics between Hi and Lo arms

	Hi N=255	Lo N=179
Mean age, years	57.5 ± 13.8	61.6 ± 13.9
Mean phosphate, mg/dl	6.6 ± 2.2	5.8 ± 1.7

• Imbalance in enrollment rates between arms

Arm	% Ineligible	Approached	Consented	Consent Rate
Hi	31.2%	625	237	37.9%
Lo	21.2%	502	318	63.3%

• Pivot to individual level randomization

High-level comparison of trial designs

HijLo

- Pragmatic
- Targets: <5.5 vs >6.5 mg/dl
- Non-study clinicians drive Rx
- Data collected: clinical only
- Outcome: Hierarchical win ratio
 - Death, all cause
 - Hospitalizations, all cause
- No outcome adjudication
- Progress: n=550 (cluster)
 - 200 of 3800 (individual)

PHISPHATE

- Pragmatic
- Targets: <4.65 vs 6.2–7.75 mg/dl
- Non-study clinicians drive Rx
- Data collected: clinical only
- Outcome: Time to first event
 - CV death, non-fatal MI, coronary revasc, stroke, PAD event
- Outcomes are adjudicated
- Progress: n=1400 of 4000

Potential threat: Calcium vs non-calcium

LANDMARK Trial

JAMA Network[~]

QUESTION Does lanthanum carbonate-based treatment without calcium-based phosphate binders reduce cardiovascular events compared with calcium carbonate-based treatment in patients with hyperphosphatemia undergoing hemodialysis?

CONCLUSION Among patients with chronic kidney disease (CKD) undergoing hemodialysis, treatment of hyperphosphatemia with lanthanum carbonate compared with calcium carbonate did not result in a significant difference in cardiovascular events.

A Primary composite outcome

P=.37

Hazard ratio, 1.11 (95% CI, 0.88-1.41)

30

B All-cause mortality

P = .42

Hazard ratio, 1.10 (95% CI, 0.88-1.37)

with chronic kidney disease on hemodialysis: the LANDMARK randomized clinical trial. JAMA. Published May 18, 2021. doi:10.1001/jama.2021.4807

Duke Nephrology

If there is time...

FGF23 reduction & outcomes: EVOLVE Study

	No. Events		-	
	≥30% N=832	< 30% N = 458	HR (95% CI)	<i>p</i> -value
Primary composite endpoint	376	235		3) 0.03
All-cause mortality	290	171	0.86 (0.70, 1.0	5) 0.14
Cardiovascular mortality	136	102	0.66 (0.50, 0.8	7) <0.01
Sudden death	54	49	0.57 (0.37, 0.8	6) <0.01
Heart failure	74	59	0.69 (0.48, 0.9	9) 0.04
Tertiary cardiovascular composite	228	170		3) <0.001
	0.1			0
		Favors	s ≥ 30% Reduction Favors < 30% Reduction	
	No.E	vents		
	≥50%	< 50%		
	N = 642	N = 648	HR (95% CI)	<i>p</i> -value
Primary composite endpoint	290	321		6) 0.01
All-cause mortality	224	237	0.84 (0.69, 1.0	2) 0.08
Cardiovascular				
mortality	104	134		0) <0.01
mortality Sudden death	104 39	134 64	●●●● 0.68 (0.52, 0.9) ●●●● 0.56 (0.36, 0.8)	,
			_	6) <0.01
Sudden death	39	64	0.56 (0.36, 0.8	6) <0.01 2) <0.01
Sudden death Heart failure Tertiary cardiovascular	39 50	64 83 226	■ 0.56 (0.36, 0.8 ■ 0.56 (0.39, 0.8	6) <0.01 2) <0.01 4) <0.001

19

Etelcalcetide versus placebo in E 2 separate trials, total: IV etelcalcetide: n = 503-80 versus placebo: n = 513 No. of patients Placebo 3x weekly for 26 weeks 0. A FGF23 concentrations in trial A B FGF23 concentrations in trial B 100 60 % Change From Baseline in FGF23, % ange From E rected Calci 40 Change From Baseline in FGF23, 50 20 0 -1.5 -20 0 0 2 -40 No. of patients -50 -60 Placebo -80 0 -100-100**Etelcalcetide** Placebo **Etelcalcetide** Placebo Etelcalcetide Placebo Etelcalcetide Placebo Week 12 Week 27 Week 12 Week 27 No. of patients 220 227 212 187 No. of patients 227 235 209 200

FGF23 reduction stabilizes LVH in ESRD

- Pilot RCT in Austria
- 1:1 randomize to etelcalcetide vs alfacalcidol
- N=62
- 1-year follow-up
- LVMI by cardiac MRI

A different approach?

DISCUSSION

