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CKD; and red blood cell transfusions to treat anemia in
CKD. The guideline has been developed with patient
partners, healthcare providers, and researchers around
the world, with the goal to generate a useful resource for

The Kidney Disease: Improving Global Outcomes (KDIGO)
2026 Clinical Practice Guideline for the Management of
Anemia in Chronic Kidney Disease (CKD) represents an
update to the guideline published in 2012. Its scope

includes diagnosis and evaluation of anemia; use of iron
to treat iron deficiency and anemia in CKD; use of
erythropoiesis-stimulating agents and hypoxia-inducible
factor-prolyl hydroxylase inhibitors to treat anemia in
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healthcare providers and patients by providing
actionable recommendations. The development of this
guideline followed an explicit process of evidence review
and appraisal based on systematic reviews. The certainty
of evidence and strength of recommendations follows
the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) approach. The
guideline also provides practice points that provide
clinical advice but are not supported by a systematic
review. Limitations of the evidence are discussed.
Research recommendations to address gaps in
knowledge, and implications for policy and payment, are
provided. The guideline targets a broad audience of
healthcare providers, affected individuals, and
stakeholders involved in the various aspects of anemia
and CKD care.
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disease (CKD), and anemia management is a key

element of contemporary nephrology practice. The
last Kidney Disease: Improving Global Outcomes (KDIGO)
guideline on the management of anemia in CKD was pub-
lished in 2012." Since the prior guideline was released, a more
robust consensus has emerged about the risks and limited
benefits of erythropoiesis-stimulating agents (ESAs), as has
additional evidence to guide the optimal use of intravenous
(i.v.) iron. More recently, hypoxia-inducible factor—prolyl
hydroxylase inhibitors (HIF-PHIs) have been introduced as
an alternative to ESAs for anemia correction in people with
CKD. However, uncertainties remain about the long-term
risks and benefits of HIF-PHIs as compared with ESAs.

Since the publication of the 2012 guideline, KDIGO held 2
Controversies Conferences on anemia management in kidney
disease populations.” The first (in December 2019) was on
optimal anemia management in CKD and covered aspects
such as iron, anemia, and outcomes; pathogenesis and diag-
nosis of iron deficiency and anemia in CKD; use of iron agents
in CKD anemia management; and impact of ESAs and novel
therapeutic agents in relation to hemoglobin (Hb) control,
iron status, and iron supplementation needs. The second (in
December 2021) was on novel anemia therapies in CKD, with
a special focus on HIF-PHIs. Participants agreed that an up-
date to the 2012 guideline was warranted and timely.

The KDIGO 2026 Clinical Practice Guideline for the
Management of Anemia in CKD was developed by an inter-
national, multidisciplinary Work Group with expertise in CKD,
a dedicated Evidence Review Team, and the KDIGO staff. The
guideline includes 4 chapters addressing the diagnosis and
management of anemia and iron deficiency, based on high-
quality scientific evidence collected by the Evidence Review
Team. The guideline includes graded recommendations, based
on the “Grading of Recommendations Assessment, Develop-
ment and Evaluation” (GRADE) criteria and supported by
systematic reviews, and ungraded practice points that direct
clinical activities and are based on expert opinion without a
systematic review. Both recommendations and practice points
are intended to help guide clinical practice and to aid in
decision-making. The KDIGO 2026 Clinical Practice Guideline
for the Management of Anemia in CKD aims to be relevant to
a global audience practicing in a wide range of clinical settings.

This report summarizes the main recommendations and
practice points of the guideline (Supplementary Table S1). For
more details, the reader is referred to the full guideline,

Q nemia is a common complication of chronic kidney
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including grading details, a complete reference list, and a
research agenda (Supplementary Table S2), available at
https://kdigo.org/guidelines/anemia-in-ckd/.

Chapter 1: Diagnosis and evaluation of anemia in people
with CKD

This chapter summarizes current knowledge regarding the
definition, prevalence, and pathophysiology of anemia in
CKD and its associated outcomes. Recognizing that iron
deficiency is a major cause of anemia in CKD as well as a
therapeutic target in anemia management, the chapter also
describes the definition, prevalence, pathophysiology, diag-
nosis, and evaluation of this condition.

Rationale for anemia management in CKD. Consistent with
the KDIGO 2012 guideline, anemia is defined according
to World Health Organization guidelines as Hb <12 g/dl
(<120 g/1) for women and <13 g/dl (<130 g/1) for men, with
age-specific thresholds in children (Figure 1).* Anemia is
highly prevalent in people with CKD and increases as CKD
advances, impacting more than half of people with CKD G4
and G5 (Figure 1).” The pathophysiology of anemia in CKD is
multifactorial, including relative erythropoietin (EPO) defi-
ciency and bone marrow EPO resistance, iron and other
nutritional deficiencies, blood loss, systemic inflammation,
and shortened red blood cell (RBC) survival (Figure 1).
Anemia is associated with numerous adverse outcomes,
including increased mortality, cardiovascular disease, heart
failure, kidney disease progression, cognitive impairment,
hospitalizations, and transfusion requirements, as well as
reduced health-related quality of life (QoL), providing a
rationale for anemia management (Figure 1).”'' Notably,
association does not prove causation, and although treatment
of anemia with ESAs modestly improves QoL and reduces
transfusion requirements, other benefits have not been
demonstrated in randomized controlled trials (RCTs). Thus,
it is uncertain whether anemia plays a causal role in other
adverse outcomes or whether the harms of ESA therapy
outweigh other potential benefits of anemia correction.

New terminology for iron deficiency in CKD. A major cause
of anemia in people with CKD is the limitation of available
iron to support RBC production. The etiology is multifacto-
rial due to increased blood loss, nutritional deficiencies,
medications that interfere with dietary iron absorption, excess
levels of the iron hormone hepcidin, which inhibits dietary
iron absorption and iron release from body stores, and
enhanced iron utilization due to ESA use. The combination of
these factors causes 2 major states of iron deficiency in CKD,
which were previously termed “absolute iron deficiency” and
“functional iron deficiency.” The KDIGO Work Group has
renamed these “systemic iron deficiency” and “iron-restricted
erythropoiesis,” respectively, to more accurately reflect the
physiological state (Figure 2). The term iron-restricted
erythropoiesis provides a rationale for why treating people
with iron may increase Hb concentration and reduce ESA
requirements, even when iron levels are above those typically
associated with deficiency.'”*’
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Potential causes (can be multiple)

« EPO deficiency/hyporesponsiveness

« Iron deficiency

+ Blood loss (Gl [malignancy, parasites], dialysis)

« Shortened RBC survival

« Hyperparathyroid or thyroid dysfunction

« Bone marrow suppression by inflammation; drugs (ACEi,
ARBs, proliferation signal inhibitors in KTRs); or malignancy
(MDS, myelofibrosis)

+ Other nutritional deficiency (folate, vitamin B, )

« Chronic inflammation (CHF, obesity, autoimmune diseases)

- Inherited anemia (thalassemia, sickle cell anemia)

« Anti-ESA antibody-mediated pure red cell aplasia (PRCA)

Outcomes associated with anemia in CKD

e o ARN

Higher mortality“fs"

Increased risk of kidney failure"/CKD progression®

Higher risk of coronary heart disease/MACE®

More left ventricular hypertrophy!

Increased risk of heart failure™

Lower QolLb<

Decreased muscle mass and strength in KTRs as measured by
lower 24-hour urinary creatinine excretion, BIA-derived
skeletal muscle mass, handgrip strength, and worse FTSTS test
scores”

Lower work productivity®

More cognitive impairment®

Increased risk of dementia'

Higher transfusion requirements®

More hospitalizations (all-cause, cardiovascular, and bleeding)®
Higher medical costs'

Figure 1| Overview of anemia in chronic kidney disease (CKD) with its definition, prevalence across CKD stages, potential causes,
and associated outcomes. ACEi, angiotensin-converting enzyme inhibitor(s); ARB, angiotensin Il receptor blocker; BIA, bioelectrical impedance
analysis; CHF, congestive heart failure; EPO, erythropoietin; FTSTS, Five Times Sit to Stand; Gl, gastrointestinal; Hb, hemoglobin; KTR, kidney
transplant recipient; MACE, major adverse cardiovascular events; MDS, myelodysplastic syndrome; QoL, quality of life; RBC, red blood cell. *Specific
cutoffs for age and sex are provided. *Wong et al,'> PMoreno et al,'* “van Haalen et al,'* ®Astor et al, *Lamerato et al,” "Al-Ahmad et al,® 9Kovesdy
et al,® "Thorp et al,"" Nissenson et al,'* JLevin et al,'® *Kurella Tamura et al,'® 'Koyama et al,'” ™He et al,” and "Vinke et al,'®

Measures of transferrin saturation (TSAT) and ferritin have
limitations as markers of iron status. However, they remain the
gold standard tests for defining and managing iron deficiency
and anemia in people with CKD because they are commonly
used, are readily available, and are the main parameters utilized
in clinical outcome trials to date. The KDIGO Work Group
did not explicitly consider serum iron (a component of TSAT)
as an independent marker of iron status.

Rationale for iron management in CKD. Many observa-
tional studies have reported that iron deficiency is associated
with an increased risk of mortality, major adverse cardio-
vascular events, lower health-related QoL, and impaired
neurocognitive tasks (Figure 3).>%7%% In several of these
studies, the association of iron deficiency with adverse out-
comes is independent of the presence of anemia. The stron-
gest evidence supporting a causal effect of iron deficiency on
outcomes arises from the Proactive IV irOn Therapy in
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hemodiALysis patients (PIVOTAL) trial, which evaluated
different treatment strategies for i.v. iron in people with CKD
G5 receiving hemodialysis (CKD G5HD) treated with ESAs.””
PIVOTAL demonstrated an improvement in cardiovascular
outcomes and mortality with a higher-dose proactive iron
strategy compared with a lower-dose reactive strategy
(described more in Chapter 2). These data provide the
rationale for diagnosing and treating iron deficiency in people
with CKD.

Approach to diagnosis and evaluation of anemia and iron
deficiency. People with CKD should be tested for anemia
and iron deficiency at referral, when anemia is suspected
based on symptoms, and regularly during follow-up.
Reasonable testing intervals are at least annually for CKD
G3, twice a year for CKD G4, and every 3 months for CKD
G5 or G5 receiving dialysis (G5D). Anemia should be eval-
uated with complete blood count, reticulocytes, ferritin, and

Kidney International (2026) 109, 44-56
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Figure 2| Systemic movement of iron in different iron-related states. (a) In normal circumstances, splenic macrophages recycle iron (Fe) from
senescent red blood cells (RBCs) via erythrophagocytosis and release of iron via the ferroportin (FPN1) export channel. This enables recycled iron to
be loaded onto transferrin (TF) in circulation and delivered to the bone marrow for erythropoiesis, replacing senescent erythrocytes. (b) Systemic
iron deficiency is characterized by reduced levels of both circulating and stored iron, generally defined as TF saturation (TSAT) <20% and
ferritin <100 ng/ml (<100 pg/l) in people with chronic kidney disease (CKD) not receiving dialysis or ferritin <200 ng/ml (<200 pig/l) in people with
CKD G5 receiving hemodialysis. In systemic iron deficiency, insufficient amounts of iron are available to sustain erythropoiesis, resulting in anemia
with low cellular hemoglobin; decreased systemic iron also results in hepcidin suppression, enabling the release of all macrophage iron. (c) Iron-
restricted erythropoiesis is characterized by reduced levels of circulating iron that limit RBC production despite adequate iron stores, generally
defined as ferritin >100-200 ng/ml (>100-200 pg/l) with TSAT <20%. In conditions of iron-restricted erythropoiesis, while erythrophagocytosis
results in ample recycled iron, inflammation-induced elevation in hepcidin levels leads to iron sequestration in macrophages, preventing its release
into circulation; this results in low TF saturation and anemia with normal cellular hemoglobin.
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« Bleeding (GlI, urogenital) P w ‘4

« Chronic inflammation (iron-restricted erythropoiesis,

increased hepcidin) + Increased risk of mortality®

« latrogenic: drugs (PP, anticoagulants, mTORi and CNI in + Increased risk of MACE
KTRs, etc.), multiple blood sampling, hemodialysis + Patient-reported outcomes: lower QoL, more fatigue, worse

« Increased iron consumption due to use of ESAs in concentration, lower well-being, more anxiety, more depressive
CKD/increased EPO production by graft in KTRs symptoms

» Worse neurocognitive tasks measuring memory, mental speed,
and attention and executive functioning

Figure 3| Overview of iron deficiency in chronic kidney disease (CKD) with its definitions, prevalence across CKD stages, potential
causes, and associated outcomes. CKD G5HD, chronic kidney disease stage G5 receiving hemodialysis; CNI, calcineurin inhibitor; EPO,
erythropoietin; ESA, erythropoiesis-stimulating agent; Gl, gastrointestinal; KTR, kidney transplant recipient; MACE, major adverse
cardiovascular events; mTORi, mammalian target of rapamycin inhibitor; PPI, proton-pump inhibitor; QoL, quality of life; TSAT, transferrin
saturation. ®Wong et al,'? Guedes et al,?® and Eisenga et al.*®
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Screen for anemia and iron deficiency
with CBC, reticulocytes, ferritin, and TSAT

Diagnose anemia with
Hb <13 g/dI [130 g/I] in M;
Hb <12 g/dI[120 g/l]in F

Severe iron deficiency, Yes

i.e,, ferritin <45 ng/ml (ug/1)?

No

Ferritin <500 ng/ml (pg/I)

Consider further evaluation for source of
bleeding and possible referral based on
clinical judgment:

« Urology: hematuria

« Gynecology: menstrual blood loss

- Gastroenterology: occult Gl blood loss

and TSAT <30%?
No Yes

Perform full anemia screening: Start intravenous iron therapy
« Peripheral blood smear
« Haptoglobin and LDH
- CRP
-Vitamin B,
« Folic acid
- Liver function tests « Check Hb, ferritin, and TSAT every month
« M-protein, free light chains, and - Withhold iron therapy if ferritin

urinary Bence-Jones protein >700 ng/ml (ug/l) or TSAT 240%
«TSH « Suspend iron therapy during active infection
«PTH
- Parasites

» ) Alternative of HIF-PHI when:
Positive Negative - Preference for oral agent

Renal anemia with
adequate iron
parameters
most likely

Treat underlying
cause or refer to
another speciality,
e.g., hematology

No other correctable causes of anemia —»
consider benefits and risks of starting
ESA therapy as first-line therapy when

« Cannot tolerate ESA
« No access to refrigeration

In ESA hyporesponsiveness, a

Hb <9-10 g/dI trial of HIF-PHI can be considered
Do not use HIF-PHI with active
malignancy or recent cardiovascular
or vascular thrombotic event

« Administer ESA intravenously or

subcutaneously at lowest possible dose

« Monitor Hb every 2-4 weeks after
ESA initiation or dose adjustment
- Do not use ESA therapy to maintain

Same Hb thresholds and monitoring
frequency of Hb apply as for ESA

Discontinue HIF-PHI after 3-4 months
if insufficient erythropoietic response

Hb =11.5 g/dI
« Suspend ESA during stroke or thrombosis

Figure 4| Management of anemia in chronic kidney disease G5 receiving hemodialysis. CBC, complete blood count; CRP, C-reactive protein;
ESA, erythropoiesis-stimulating agent; F, female; Gl, gastrointestinal; Hb, hemoglobin; HIF-PHI, hypoxia-inducible factor-prolyl hydroxylase
inhibitor; LDH, lactate dehydrogenase; M, male; PTH, parathyroid hormone; TSAT, transferrin saturation; TSH, thyroid-stimulating hormone.

TSAT. If initial tests do not reveal the cause, healthcare
providers should consider an expanded panel as warranted,
including blood smear review, haptoglobin, lactate dehy-
drogenase, C-reactive protein, vitamin Bj,, folate, liver
function tests, serum protein electrophoresis with immu-
nofixation, serum free light chains, urinary Bence-Jones
protein, thyroid-stimulating hormone, and fecal occult
blood test. Parathyroid hormone could also be measured if
clinically indicated and with reference to the KDIGO 2024

48

CKD guideline.”” In people with iron deficiency of uncertain
cause, particularly with ferritin <45 ng/ml (<45 pg/l) or
microcytic anemia (mean cell volume <80 fl), healthcare
providers should consider evaluation for blood loss and
referral to specialists (e.g., gastroenterologist), as needed
(Figures 4 and 5).°!

Research recommendations. ~ Additional studies are needed
to understand the prevalence and health outcomes of iron
deficiency in the absence of anemia, investigate the use of

Kidney International (2026) 109, 44-56
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Screen for anemia and iron deficiency
with CBC, reticulocytes, ferritin, and TSAT

Diagnose anemia with
Hb <13 g/dI [130 g/I] in M;
Hb <12 g/dI[120 g/l] in F

Severe iron deficiency, Yes

i.e., ferritin <45 ng/ml (ug/1)? Consider further evaluation for source of

bleeding and possible referral based on
clinical judgment:

No « Urology: hematuria
+ Gynecology: menstrual blood loss
Ferritin <100 ng/ml (ug/l) and TSAT <40%, or - Gastroenterology: occult Gl blood loss
Ferritin 100 ng/ml (ug/I) to 300 ng/ml (ug/1)
and TSAT <25%
No Yes

Perform full anemia screening: Start iron therapy

« Peripheral blood smear Oral iron vs. intravenous iron based

« Haptoglobin and LDH on person's values and preferences

+ CRP

-Vitamin B,

« Folic acid

« Liver function tests Change oral to intravenous iron

+ M-protein, free light chains, and if no response or not tolerated

urinary Bence-Jones protein

«TSH

«PTH

« Parasites « Check iron parameters every 3 months

- Withhold iron therapy if ferritin
>700 ng/ml (ug/l) or TSAT 240%
« Suspend iron therapy during active infection
Positive Negative
i § % o

Treat underlying Sl st i No o'fher correctable causes of anemia — ég;';:::f;}g:g;':ge:?en‘
CEUBR G (A @ adequate iron consider benefits a.nd risks of starting  Cannot tolerate ESA
another speciality, parameters ESA therapy as first-line therapy based on T et
e.g., hematology most likely symptoms (generally at Hb <8.5-10 g/dl)

(Chapter 3 of the full guideline) Do not use HIF-PHI with active

malignancy or recent cardiovascular
or vascular thrombotic event

+ Administer ESA subcutaneously at Same Hb thresholds and monitoring
lowest dose possible frequency of Hb apply as for ESA
+ Monitor Hb every 2-4 weeks after
ESA initiation or dose adjustment Discontinue HIF-PHI after 3-4 months
« Do not use ESA therapy to maintain if insufficient erythropoietic response
Hb =11.5 g/dI
« Suspend ESA during stroke or
thrombosis

Figure 5| Management of anemia in chronic kidney disease not receiving dialysis. CBC, complete blood count; CRP, C-reactive protein;
ESA, erythropoiesis-stimulating agent; F, female; G, gastrointestinal; Hb, hemoglobin; HIF-PHI, hypoxia-inducible factor-prolyl hydroxylase
inhibitor; LDH, lactate dehydrogenase; M, male; PTH, parathyroid hormone; TSAT, transferrin saturation; TSH, thyroid-stimulating hormone. *While
not U.S. Food and Drug Administration approved for this patient population, HIF-PHIs have been approved by other regulatory agencies.

other iron status parameters (e.g., reticulocyte Hb content Chapter 2: Use of iron to treat iron deficiency and anemia in
and percentage of hypochromic RBCs) including test stan-  people with CKD
dardization, and evaluate Hb levels and iron parameters in This chapter highlights when and how to use iron supple-

pregnant women with CKD and their association with mentation to treat iron deficiency and anemia in people with
maternal and fetal outcomes. CKD. This includes the goal and rationale for iron use, iron

Kidney International (2026) 109, 44-56 49
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status parameters for initiating and withholding iron therapy,
choice of iron formulation and route of administration, and
frequency of monitoring. Approaches for mitigating and
managing potential adverse consequences of iron are also
discussed, including infection, hypersensitivity, and labile iron
reactions. Key guidance for iron management is summarized
in Figures 4 and 5.

Iron supplementation initiation thresholds and treatment
targets. The goal of iron supplementation is to maintain
sufficient iron reserves to support RBC production or stim-
ulate an erythropoietic response while minimizing the po-
tential risks of excess iron, including infection and oxidant-
mediated tissue injury. Evidence from RCTs demonstrates
that iron supplementation can increase iron stores and
modestly improve Hb values, which may allow fewer RBC
transfusions and lower ESA doses, thereby potentially miti-
gating their associated risks (see Chapters 3 and 4). However,
there are limited data from RCTs on critical clinical outcomes,
particularly in people with CKD not receiving hemodialysis
(HD) or ESAs, including those treated with HIF-PHIs.
Moreover, no RCTs have assessed the benefits and harms of
iron through evaluating critical outcomes at different starting
thresholds of Hb, indices of iron status, or treatment targets.
Thus, uncertainties remain regarding the ideal balance of Hb
concentration, ESA or HIF-PHI dose, and iron supplemen-
tation, as well as optimal thresholds for initiating iron and
treatment targets.

In PIVOTAL, for people with CKD G5HD treated with
ESAs, high-dose i.v. iron sucrose (400 mg/mo) administered in
a proactive fashion unless ferritin was >700 ng/ml (>700 pg/1)
or TSAT =40% resulted in a moderately reduced risk of death
and important cardiovascular events compared with reactive
low-dose iron (0-400 mg/mo) administered only when ferritin
was <200 ng/ml (<200 pg/l) or TSAT <20%, without
increasing the risk of infections or other adverse events.”’
Transfusion and ESA requirements were also lower in the
proactive high-dose arm. Notably, it remains uncertain what
drove these outcomes: correction of iron deficiency per se, lower
ESA doses, a combination of these, or another mechanism. It is
also uncertain whether the proactive high-dose iron regimen is
the optimal strategy or whether a regimen between the 2 tested
in PIVOTAL (or more intensive than either) is even better.
However, preclinical studies and observational data suggest that
more intensive iron regimens may be associated with an
increased risk of mortality and infections.

To balance the benefits seen with higher iron doses in
PIVOTAL against the uncertainty about optimal treatment
targets, the KDIGO Work Group has provided guidance on
when to initiate iron and when to withhold it. In people with
anemia and CKD G5HD, initiation of iron supplementation is
suggested when ferritin =500 ng/ml (=500 pg/1) and
TSAT =30%, consistent with the KDIGO 2012 Anemia
guideline and the inclusion thresholds from key studies in this
population, including PIVOTAL. For people with anemia and
CKD not receiving HD, iron initiation is suggested when
either ferritin <100 ng/ml (<100 pg/l) and TSAT <40% or
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ferritin is between 100 and 300 ng/ml (between 100 and 300
lg/l) with TSAT <25%. For all people with CKD treated
with iron, it is reasonable to withhold routine iron if
ferritin >700 ng/ml (>700 pg/l) or TSAT =40%. Although
HIF-PHIs have been postulated to improve iron availability
and reduce iron treatment needs, there are insufficient data to
recommend different thresholds in people treated with HIF-
PHIs compared with ESAs.

The KDIGO Work Group acknowledged that these criteria
for initiating and withholding iron are somewhat arbitrary,
and individualization may be warranted. For example,
smaller, shorter-term studies, including the Dialysis Patients’
Response to IV Iron with Elevated Ferritin (DRIVE) I and II
trials, suggest that iron may lower ESA doses without
increasing adverse effects when ferritin is from 500 to
1200 ng/ml (from 500 to 1200 pg/l) in people with CKD
GS5HD, anemia, and TSAT =25%.’” Thus, a trial course of
iron administration could be considered in people with low
TSAT and elevated ferritin if they have refractory anemia or
high ESA requirements.

Iron treatment may also be considered in people with CKD
and profound iron deficiency (ferritin <30 ng/ml [<30 pg/l]
and TSAT <20%) in the absence of anemia, especially in the
presence of symptoms. This is based on the notion that iron
fulfills many additional biological functions in addition to Hb
synthesis, including energy generation by the electron trans-
port chain, DNA synthesis, and cellular proliferation and
differentiation.”” Moreover, iron deficiency is associated with
adverse outcomes in people with CKD, independent of ane-
mia,>??473¢ Finally, there is evidence from several RCTs in
people with heart failure, including the subset of people with
CKD, that iron therapy independent of anemia improves
functional status and hospitalizations.”*°

Personalizing route of administration, iron formulation, and
treatment strategy. In people with anemia and CKD G5HD in
whom iron therapy is initiated, i.v. iron is suggested rather than
oral iron. This is based on the greater effectiveness of i.v. iron
versus oral iron to increase iron stores and the fact that the
strongest evidence for benefit from iron therapy comes from
PIVOTAL, which utilized i.v. iron.>” Additional factors include
the ease of administering i.v. iron during in-center HD and
reduction in pill burden. However, oral iron may be utilized in
people concerned about hypersensitivity reactions or where
availability and/or cost limit iv. iron. In people with CKD
G5HD receiving i.v. iron, a proactive approach similar to that
used in PIVOTAL is reasonable, with monitoring of TSAT,
ferritin, and Hb every 1-3 months or more frequently where
indicated (e.g., initiation of or increase in ESA or HIF-PHI,
episode of known blood loss, recent hospitalization, impor-
tant increase in TSAT or ferritin, or overshooting target limits).

In people with anemia and CKD not receiving HD, either
oral iron or i.v. iron is suggested based on the person’s values
and preferences, the degree of anemia and iron deficiency,
and the relative efficacy, tolerability, availability, and cost of
each. Intravenous iron appears to have a small benefit in
increasing iron parameters and Hb levels higher and more
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rapidly than oral iron, but it is uncertain whether this is
clinically meaningful. Oral iron may be favored for some
people as it is inexpensive, readily available, and does not
require i.v. access or hospital visits and may preserve venous
capital for arteriovenous access creation. Tolerability may also
influence the choice between oral and i.v. iron; gastrointes-
tinal side effects frequently limit oral iron dosing, and hy-
persensitivity reactions are uncommon but potentially severe
complications of i.v. iron. In people with CKD not receiving
HD treated with iron, it is reasonable to monitor TSAT,
ferritin, and Hb at least every 3 months (or more frequently
where indicated, as above). In people who are treated with
oral iron, if there is insufficient effect after 1-3 months or if
tolerability is poor, switching to i.v. iron is advised.

The choice among different formulations of oral iron or
iv. iron is guided by cost/availability, individual patient
preference, tolerability, efficacy, and recommended dosing
schedules; head-to-head RCT data are minimal to support
recommending certain formulations over others. Various oral
and iv. iron formulations have different bioavailability,
dosing strategies, and side-effect profiles that may influence
the choice of agent used. A key difference between i.v. for-
mulations is the amount of labile iron released, which affects
the maximum dose that can be administered in a single
setting. Although PIVOTAL used iron sucrose specifically, in
the judgment of the KDIGO Work Group, the benefits of the
proactive regimen likely extend to other i.v. iron formula-
tions. Certain i.v. iron preparations (ferric carboxymaltose,
saccharated iron oxide, and iron polymaltose) raise intact
fibroblast growth factor 23 through unknown mechanisms
related to the carbohydrate carrier and can thus cause
hypophosphatemia and bone complications.”' Phosphate
levels should therefore be monitored in people receiving these
agents, particularly in earlier stages of CKD, kidney transplant
recipients, and people receiving repeated doses.

Improving the safety of iron treatment. Iron is essential for
growth of many pathogens, and preclinical data have demon-
strated that iron may worsen outcomes in certain infections.
Although there is no conclusive evidence from RCTs that iron
increases infection risk in people with CKD, given the limited
clinical trial data and theoretical and experimental support for
potential harm, temporarily holding iron therapy should be
considered during systemic infections. It is unlikely that briefly
holding iron therapy until the infection resolves will signifi-
cantly impact anemia management over the longer term.

Hypersensitivity reactions are a rare complication of i.v.
iron. Less severe reactions can also be caused by the release of
labile iron. The first dose of i.v. iron should therefore be
administered only if there is a capability to manage acute hy-
persensitivity and hypotensive reactions, and the dose of iron
administered should not exceed the maximum recommended.
Test doses of iron and routine pretreatment with corticosteroids
or antihistamines are not necessary because they do not predict
or reduce the risk of hypersensitivity. If there is a mild or
moderate reaction, the infusion should be stopped temporarily
without (for nonspecific symptoms) or with (for mild or
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moderate infusion reactions) administration of corticosteroids
or antihistamines, with or without iv. fluids. If symptoms
improve, iron can be restarted at a 25%—50% lower rate, given
that these reactions are often related to labile iron release, which
may be ameliorated with slower infusions. Alternative iron
preparations can also be considered for stronger reactions.
Severe anaphylactoid reactions necessitate appropriate treat-
ment, and future i.v. iron use should be avoided.

Research recommendations. ~Additional studies are needed
to assess the benefits and harms of different iron dosing regi-
mens in people with CKD not receiving HD and people with
CKD G5HD targeting intermediate ferritin and TSAT levels as
well as higher ferritin levels than those studied in PIVOTAL.
Studies are also needed to evaluate optimal iron regimens in
people with CKD and anemia treated with HIF-PHIs, people
with CKD and iron deficiency without anemia, and pregnant
women with CKD. Newly available oral iron compounds
should be compared with traditional oral and i.v. iron com-
pounds, and alternate day versus once daily oral iron admin-
istration should be compared. Studies are also needed to
evaluate the prevalence of iron overload in people with CKD on
iron therapy, including novel biomarkers and imaging tech-
niques, as well as what thresholds are associated with toxicity.

Chapter 3: Use of ESAs, HIF-PHIs, and other agents to treat
anemia in people with CKD

This chapter highlights how and when to initiate ESAs,
including recommended investigations for identifying
correctable causes before starting therapy, the goal and
rationale for ESA use, Hb targets for people receiving an ESA,
how to titrate ESA dose to avoid a rapid rise of Hb, and how
to investigate and manage hyporesponsiveness. The chapter
also discusses how HIF-PHIs could be used in clinical prac-
tice, primarily in those who cannot tolerate or do not
adequately respond to ESAs. Key recommendations for ESA
and HIF-PHI usage are summarized in Figures 4 and 5.

Personalizing Hb levels for ESA initiation. ESAs improve
anemia-related fatigue and reduce the risk of RBC trans-
fusions, although they do not reduce the risk of adverse car-
diovascular outcomes or have a major effect on QoL in people
with CKD-related anemia. In people receiving maintenance
HD, evidence clearly shows that using ESAs to target higher Hb
levels (e.g., =13 g/dl [=130 g/l]) increases the risk of cardio-
vascular events, such as stroke and vascular access loss.

Before initiating ESA treatment, healthcare providers
should ensure that patients are iron replete and that other
reversible causes of anemia have been investigated and
addressed (see Chapter 1). For some patients, addressing
reversible causes of anemia (including iron deficiency) may
obviate the need for ESA treatment.

If ESAs are desired, a Hb of =9-10 g/dl (=90-100 g/l) is a
reasonable threshold for initiation among people receiving
maintenance dialysis. The guideline also advises consideration
of each individual’s overall health, comorbidities, and per-
sonal preferences when deciding whether to initiate ESAs.
People who are at higher risk for adverse events from ESA
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treatment, such as those with a recent stroke or recurrent HD
access thrombosis, may be more likely to prefer ESA initiation
when Hb is closer to 9.0 g/dl (90 g/l) or even lower, thus
delaying or potentially avoiding ESA treatment. People with
lower cardiovascular risk and reduced exercise capacity or
symptoms attributable to anemia and people who place a high
value on avoiding RBC transfusions (e.g., those being
considered for kidney transplantation) may be more likely to
prefer ESA initiation when Hb is closer to 10.0 g/dl (100 g/l).

For people with CKD not receiving dialysis, the Hb
threshold for the initiation of ESAs should be individualized
based on the presence of symptoms attributable to anemia,
the potential benefits of higher Hb concentration, and the
potential harms of RBC transfusion or ESA therapy.
For most people, the Hb threshold for initiation should be
8.5-10.0 g/dl (85-100 g/l). However, a lower Hb threshold
could be considered in people with cardiovascular disease,
thromboembolic disease, and malignancy (especially with
active malignancy when the expected treatment outcome is
cure). In contrast, for children, kidney transplant candidates,
and those with symptoms attributable to anemia, a higher Hb
threshold may be considered.

Personalizing Hb targets for people receiving ESAs. For
adults receiving ESAs, the guideline recommends a target
Hb =11.5 g/dl (=115 g/l) and typically between 10 and 11.5
g/dl (between 100 and 115 g/l). The target range was selected
to balance the potential benefits of higher Hb against its
potential harms, including the excess risk of hypertension at
Hb targets >11.5 g/dl (>115 g/l) and the risks of vascular
events at even higher targets.”” **

For children receiving ESAs, the Hb target should be indi-
vidualized. Clinical factors that are unique to children include
developmental and psychological factors, lower risk of car-
diovascular events, and potentially greater importance of
avoiding allosensitization to facilitate kidney transplantation.
Therefore, the optimal Hb target for children is unknown, and
healthcare providers must consider how the recommendation
for adults could be adapted to children with kidney disease.

ESAs may be administered subcutaneously or intrave-
nously in people receiving maintenance HD, whereas the
subcutaneous route is preferred for ESA recipients with other
forms of CKD. For epoetin, the subcutaneous route is more
efficient, but for darbepoetin alfa, there is no difference in
dose requirements between routes.

Improving the safety of ESA treatment.  For both adults and
children, the guideline advises that healthcare providers aim to
increase Hb gradually, with ESA dose adjusted to avoid rapid
increases of more than about 1 g/dl (10 g/1) every 2 weeks. If
rapid rises of this magnitude occur, the dose should be reduced
by 25%-50%. If Hb exceeds 11.5 g/dl (115 g/1), reducing the
dose of ESA may be preferable to temporary discontinuation.

Consideration should be given to suspending ESAs during
hospitalization for acute stroke, vascular access thrombosis, or
thromboembolic events. Reinitiation of ESA therapy after
hospitalization should be based on shared decision-making
after discussion of benefits and risks.
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Studies in people with certain cancers show that using
ESAs to treat anemia may lead to increased risk of cancer
progression and death.”” Therefore, in people with CKD,
anemia, and active cancer (or a history of cancer), healthcare
providers should consider whether to initiate or continue
ESAs based on patient preferences and anticipated clinical
outcomes, especially when cancer treatment is aimed at cure.

ESA hyporesponsiveness. The guideline defines people
who have CKD and ESA hyporesponsiveness as those who
“do not achieve target Hb levels despite a significant increase
in ESA doses or continue to require high doses to maintain
the target.” It advises healthcare providers to identify and treat
possible causes, including iron deficiency, iron sequestration
from chronic inflammation, suboptimal dialysis adequacy,
and occult blood loss.

Role of HIF-PHIs. HIF-PHIs are oral agents that stimulate
endogenous EPO production by stabilizing HIF transcription
factors. Available evidence suggests that HIF-PHI treatment
can achieve comparable Hb levels among people with CKD-
related anemia as compared with ESA treatment.””®" The
guideline suggests using an ESA rather than a HIF-PHI to
treat anemia in people for whom a further increase in Hb is
desired despite addressing potentially correctable causes. This
recommendation is based on the long clinical experience with
ESAs and their efficacy for increasing Hb. In particular, the
extensive long-term data demonstrating the balance of risks
and benefits associated with ESA use were felt to be a sub-
stantial advantage compared with the lack of such data from
HIF-PHI recipients outside clinical trials.’'=%° Additionally,
although the overall analyses of RCTs suggest that HIF-PHIs
are noninferior to ESAs for critical adverse outcomes, some
studies suggest that at least some HIF-PHIs may have a higher
risk of major adverse cardiovascular events and other vascular
events than ESAs, particularly in CKD populations not
receiving dialysis.’'

The guideline highlights 2 clinical scenarios where HIF-
PHIs may be considered: (i) ESA hyporesponsiveness or
intolerance and (ii) circumstances where ESA use is imprac-
tical (e.g., if there are barriers to parenteral administration).
However, healthcare providers should be aware that although
a few studies have suggested that HIF-PHIs may require less
dose escalation than ESAs in people with elevated inflam-
matory markers,” """ the safety and benefit of HIF-PHIs in
people with ESA hyporesponsiveness have not been estab-
lished. Very limited studies have been conducted in people
with ESA hyporesponsiveness, and none have meaningfully
examined important clinical or patient-centered outcomes
beyond Hb levels.””®’ In either case, healthcare providers
should discuss the risks and benefits of HIF-PHIs with in-
dividuals in whom treatment is considered and aim to iden-
tify conditions where the theoretical risk of adverse events
may be higher than average, such as polycystic kidney disease,
proliferative retinal disease, pulmonary arterial hypertension,
and pregnancy.”®"’

For people who elect a trial of HIF-PHIs, the principles for
the use of these medications are generally similar to those
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advised for ESAs. The guideline advises against the use of ESA
and HIF-PHI therapies in combination, given the lack of
clinical data on safety and efficacy.

Research recommendations.  Additional studies are needed
to inform optimal ESA use in people receiving maintenance
peritoneal dialysis, in kidney transplant recipients, and in
children across all severities of CKD. Studies comparing the
long-term risks and benefits of HIF-PHI treatment with those
of ESA treatment are needed in adults and children with CKD
G5D and CKD not receiving dialysis.

Chapter 4: Red blood cell transfusions to treat anemia in
people with CKD

Supplemental iron and ESAs both reduce the risk of RBC
transfusion in people with CKD. However, RBC transfusions
remain essential for the management of severe or refractory
anemia in this population. This chapter highlights situations
where RBC transfusion should be used and strategies that can
minimize complications such as alloimmunization.

Rationale for a restrictive transfusion strategy in CKD
populations. RBC transfusion has well-documented adverse
effects in the general population, including transfusion-
associated circulatory overload, transfusion-related acute
lung injury, immunologic sensitization, and hemolytic
transfusion reactions. An additional consideration in people
with CKD is that alloimmunization following RBC trans-
fusion may reduce future suitability for kidney trans-
plantation.”*”” However, many of these harms are relatively
uncommon and must be considered against the risks of severe
untreated anemia, such as myocardial ischemia, decom-
pensated heart failure, or death.

Indications for RBC transfusion. For people with CKD and
acute life-threatening anemia, the guideline advises RBC
transfusion whenever rapid correction of anemia is required
to stabilize the patient’s condition (e.g., acute hemorrhage
and unstable coronary artery disease). The guideline also
advises that RBC transfusion should be considered for pre-
operative correction of Hb in people with severe anemia who
are undergoing surgery in which clinically relevant intra-
operative blood loss is anticipated.

For people with CKD and chronic anemia, the guideline
advises that the benefits of RBC transfusion may outweigh its
harms in 2 groups: (i) those in whom ESA or HIF-PHI therapy
is ineffective (e.g., those with hemoglobinopathies, bone
marrow failure, and ESA or HIF-PHI hyporesponsiveness) and
(ii) those in whom ESA or HIF-PHI therapy may be harmful
(e.g., those with previous or current malignancy and previous
stroke).

Hb threshold for RBC transfusion. RBC transfusion should
be considered in any acute clinical situation where delaying
anemia correction may lead to adverse outcomes or death, such
as severe acute hemorrhage, unstable coronary artery disease,
or imminent surgery where substantial blood loss is expected.

For less acute situations, the guideline emphasizes that
anemia-related signs and symptoms should be the primary
trigger for deciding when to give RBC transfusions in people
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with CKD rather than an arbitrary Hb threshold. However,
transfusions could be given when the Hb level is <7 g/dl
(<70 g/1) for asymptomatic and hemodynamically stable
adult inpatients, <7.5 g/dl (<75 g/l) for people undergoing
cardiac surgery, or <8 g/dl (<80 g/l) for those undergoing
orthopedic surgery or those with clinically significant car-
diovascular disease.™

Reducing the need for RBC transfusions. The guideline
highlights strategies that may reduce the need for RBC
transfusions among people with CKD, if applied broadly at
the level of the healthcare system as well as in individual
patients. Exemplar strategies include implementing stan-
dardized protocols for early detection and correction of iron
deficiency; guideline-concordant use of iv. iron and ESAs;
patient education about options for anemia management; and
decision aids to help individual patients make informed de-
cisions about the use of RBC transfusions in a manner that is
consistent with their values and preferences.

Research recommendations. In CKD populations, pro-
spective observational studies are needed to examine the
contemporary use of RBC transfusions, including the indi-
cation for transfusion, the subsequent risk of alloimmuniza-
tion, and uptake of kidney transplantation among transfusion
recipients. Comparisons between regions may help to identify
best practices for managing anemia among people with CKD,
which in turn may determine how to reduce the risk for RBC
transfusion. Further studies are needed on the optimal
methods for RBC processing and storage and how these
methods may affect clinical outcomes including alloimmu-
nization and post-transplant outcomes.

Conclusion

The KDIGO 2026 Clinical Practice Guideline for the Man-
agement of Anemia in CKD updates the 2012 guideline.
Recent developments impacting the management of anemia
in CKD, and the emergence of new evidence for iron man-
agement and novel therapies such as HIF-PHIs, justified the
need for a global guideline document. The guideline sum-
marizes the diagnosis, management, and treatment of anemia
in people with CKD and aims to be relevant to a global
audience. Our systematic reviews identified gaps in the
knowledge base and remaining controversies, which are in-
tegrated into a comprehensive research agenda. Together,
these recommendations and practice points offer a strong
basis for the management of anemia in people with CKD.
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